一道自主招生数学平面几何的题目,急求解答~~!!!
AB、CD分别是等腰梯形的两腰,M是其内切圆与腰CD的切点,AM交内切圆于点K,BM交内切圆于点L,求AM/AK+BM/BL的值。...
AB、CD分别是等腰梯形的两腰,M是其内切圆与腰CD的切点,AM交内切圆于点K,BM交内切圆于点L,求AM/AK+BM/BL的值。
展开
展开全部
解:
【1】等腰梯形ABCD中,不妨设AD为上底,BC为下底。
内切圆O切腰AB于点N,切上底AD于点E,切下底BC于点F。
由对称性可得:NA=AE=ED=DM=x.
NB=BF=FC=CM=y.
同时,∠C+∠D=180º.
∴cos∠C+cos∠D=0.
【2】在⊿ADM中,由余弦定理可得:
cos∠D=(AD²+MD²-AM²)/[2AD×MD]=(5x²-AM²)/(4x²).
即:cos∠D=(5x²-AM²)/(4x²).
在⊿BCM中,同理可得:
cos∠C=(5y²-BM²)/(4y²)
∴两式相加,整理可得:
[AM²/x²]+[BM²/y²]=10.
【3】易知,点A是内切圆O外的一点,AM是圆O的割线,AN是切线。
∴由“切割线定理”可得:x²=AN²=AK×AM.
∴AM/AK=AM²/(AK×AM)=AM²/x².
同理,y²=BN²=BL×BM.
∴BM/BL=BM²/(BL×BM)=BM²/y².
∴综上有:AM/AK=AM²/x²,且BM/BL=BM²/y².
代人:[AM²/x²]+[BM²/y²]=10.
可得:(AM/AK)+(BM/BL)=10.
【1】等腰梯形ABCD中,不妨设AD为上底,BC为下底。
内切圆O切腰AB于点N,切上底AD于点E,切下底BC于点F。
由对称性可得:NA=AE=ED=DM=x.
NB=BF=FC=CM=y.
同时,∠C+∠D=180º.
∴cos∠C+cos∠D=0.
【2】在⊿ADM中,由余弦定理可得:
cos∠D=(AD²+MD²-AM²)/[2AD×MD]=(5x²-AM²)/(4x²).
即:cos∠D=(5x²-AM²)/(4x²).
在⊿BCM中,同理可得:
cos∠C=(5y²-BM²)/(4y²)
∴两式相加,整理可得:
[AM²/x²]+[BM²/y²]=10.
【3】易知,点A是内切圆O外的一点,AM是圆O的割线,AN是切线。
∴由“切割线定理”可得:x²=AN²=AK×AM.
∴AM/AK=AM²/(AK×AM)=AM²/x².
同理,y²=BN²=BL×BM.
∴BM/BL=BM²/(BL×BM)=BM²/y².
∴综上有:AM/AK=AM²/x²,且BM/BL=BM²/y².
代人:[AM²/x²]+[BM²/y²]=10.
可得:(AM/AK)+(BM/BL)=10.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询