在△ABC中,已知内角A=π/3边BC=2根号3,设内角B=x周长为y,--人在
4个回答
展开全部
角A=π/3,角B=x,则角C=π-x-π/3=2π/3-x,边BC=2根号3,
由正弦定理得BC/sinA=AB/sinC=AC/sinB,
AB=BCsinC/sinA=(2根号3)sin(2π/3-x)/sin(π/3)
=(2根号3)sin(x+π/3)/[(根号3)/2]
=4sin(x+π/3),
AC=BCsinB/sinA=(2根号3)sinx/sin(π/3)=(2根号3)sinx/[(根号3)/2]=4sinx
周长为y=AB+BC+AC=4sin(x+π/3)+2根号3+4sinx=4[sinxcos(π/3)+cosxsin(π/3)]+2根号3+4sinx
=4[sinx*(1/2)+cosx*(根号3)/2]+2根号3+4sinx=6sinx+2(根号3)cosx+2根号3
即f(x)=6sinx+2(根号3)cosx+2根号3
B=x>0,且角C=π-x-π/3=2π/3-x>0,所以0<x<2π/3,f(x)定义域为(0,2π/3) 望采纳
由正弦定理得BC/sinA=AB/sinC=AC/sinB,
AB=BCsinC/sinA=(2根号3)sin(2π/3-x)/sin(π/3)
=(2根号3)sin(x+π/3)/[(根号3)/2]
=4sin(x+π/3),
AC=BCsinB/sinA=(2根号3)sinx/sin(π/3)=(2根号3)sinx/[(根号3)/2]=4sinx
周长为y=AB+BC+AC=4sin(x+π/3)+2根号3+4sinx=4[sinxcos(π/3)+cosxsin(π/3)]+2根号3+4sinx
=4[sinx*(1/2)+cosx*(根号3)/2]+2根号3+4sinx=6sinx+2(根号3)cosx+2根号3
即f(x)=6sinx+2(根号3)cosx+2根号3
B=x>0,且角C=π-x-π/3=2π/3-x>0,所以0<x<2π/3,f(x)定义域为(0,2π/3) 望采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:根据公式有,a/sinA=b/sinB=c/sinC
a=2√3,∠A=60°
=>b=4sinB,c=4sin(120°-B)
=>周长l=a+b+c
=2√3+4sinB+4sin(120°-B)
=2√3+4(sinB+√3/2cosB+1/2sinB)
=2√3+2(3sinB+√3cosB)
=2√3+2√3(√3sinB+cosB)
=2√3+4√3(√3/2sinB+1/2cosB)
=2√3+4√3sin(B+30°)
因为-1<=sina<=1且0<B<120°
1/2<sin(B+30°)<=1 此时B=60°,即现在是等边三角形了。
=>l周长=6√3
a=2√3,∠A=60°
=>b=4sinB,c=4sin(120°-B)
=>周长l=a+b+c
=2√3+4sinB+4sin(120°-B)
=2√3+4(sinB+√3/2cosB+1/2sinB)
=2√3+2(3sinB+√3cosB)
=2√3+2√3(√3sinB+cosB)
=2√3+4√3(√3/2sinB+1/2cosB)
=2√3+4√3sin(B+30°)
因为-1<=sina<=1且0<B<120°
1/2<sin(B+30°)<=1 此时B=60°,即现在是等边三角形了。
=>l周长=6√3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2011-02-18
展开全部
角A=π/3,角B=x,则角C=π-x-π/3=2π/3-x,边BC=2根号3,
由正弦定理得BC/sinA=AB/sinC=AC/sinB,
AB=BCsinC/sinA=(2根号3)sin(2π/3-x)/sin(π/3)
=(2根号3)sin(x+π/3)/[(根号3)/2]
=4sin(x+π/3),
AC=BCsinB/sinA=(2根号3)sinx/sin(π/3)=(2根号3)sinx/[(根号3)/2]=4sinx
周长为y=AB+BC+AC=4sin(x+π/3)+2根号3+4sinx=4[sinxcos(π/3)+cosxsin(π/3)]+2根号3+4sinx
=4[sinx*(1/2)+cosx*(根号3)/2]+2根号3+4sinx=6sinx+2(根号3)cosx+2根号3
即f(x)=6sinx+2(根号3)cosx+2根号3
B=x>0,且角C=π-x-π/3=2π/3-x>0,所以0<x<2π/3,f(x)定义域为(0,2π/3)
由正弦定理得BC/sinA=AB/sinC=AC/sinB,
AB=BCsinC/sinA=(2根号3)sin(2π/3-x)/sin(π/3)
=(2根号3)sin(x+π/3)/[(根号3)/2]
=4sin(x+π/3),
AC=BCsinB/sinA=(2根号3)sinx/sin(π/3)=(2根号3)sinx/[(根号3)/2]=4sinx
周长为y=AB+BC+AC=4sin(x+π/3)+2根号3+4sinx=4[sinxcos(π/3)+cosxsin(π/3)]+2根号3+4sinx
=4[sinx*(1/2)+cosx*(根号3)/2]+2根号3+4sinx=6sinx+2(根号3)cosx+2根号3
即f(x)=6sinx+2(根号3)cosx+2根号3
B=x>0,且角C=π-x-π/3=2π/3-x>0,所以0<x<2π/3,f(x)定义域为(0,2π/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询