已知函数f(x)=-x³+3x²+9x+a
1.求f(x)的单调区间2.若f(x)在区间[-2,2]上的最大值为20,求函数f(x)在该区间上的最小值...
1.求f(x)的单调区间
2.若f(x)在区间[-2,2]上的最大值为20,求函数f(x)在该区间上的最小值 展开
2.若f(x)在区间[-2,2]上的最大值为20,求函数f(x)在该区间上的最小值 展开
展开全部
1:用^来表示次方
f(x)=-x^3+3x^2+9x+a
则f(x)的导数f’(x)=-3x^2+6x+9
令f’(x)=0
得x=-1或x=3
所以x=-1,x=3为函数极值点
令f’(x)<0,即x>3或x<-1
根据导数性质知
f(x)在(-∞,-1)和(3,+∞)上单调递减
在(-1,3)单调递增,即x=-1为f(x)极小值点,x=3为函数极大值点
2:因为f(x)在[-2,-1]上单减,在[-1,2]上单增
所以f(x)在区间[-2,2]上的极大值为f(-2)或f[2],最小值为f(-1)
而f(-2)=8+12-18+a=2+a
f(2)=-8+12+18+a=22+a>f(2)
即最大值为f(2)=22+a=20,所以a=-2
所以其在区间[-2,2]上的最小值为
f(-1)=1+3-9-2=-7
f(x)=-x^3+3x^2+9x+a
则f(x)的导数f’(x)=-3x^2+6x+9
令f’(x)=0
得x=-1或x=3
所以x=-1,x=3为函数极值点
令f’(x)<0,即x>3或x<-1
根据导数性质知
f(x)在(-∞,-1)和(3,+∞)上单调递减
在(-1,3)单调递增,即x=-1为f(x)极小值点,x=3为函数极大值点
2:因为f(x)在[-2,-1]上单减,在[-1,2]上单增
所以f(x)在区间[-2,2]上的极大值为f(-2)或f[2],最小值为f(-1)
而f(-2)=8+12-18+a=2+a
f(2)=-8+12+18+a=22+a>f(2)
即最大值为f(2)=22+a=20,所以a=-2
所以其在区间[-2,2]上的最小值为
f(-1)=1+3-9-2=-7
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |