用数学归纳法证明:1·2·3+2·3·4+3·4·5+。。。+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)

yx208
2011-02-17 · TA获得超过1.2万个赞
知道大有可为答主
回答量:2365
采纳率:66%
帮助的人:2014万
展开全部
证:
(1)n=1时,左式=1·2·3=6
右式=1/4·1·2·3·4=6
成立!
(2)假设n=k≥2(k∈N)时成立,即:
1·2·3+2·3·4+3·4·5+。。。+k(k+1)(k+2)=1/4·k(k+1)(k+2)(k+3)
则当n=k+1时
1·2·3+2·3·4+3·4·5+。。。+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=(1/4)·k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=(1/4)·(k+1)(k+2)(k+3)(k+4)
显然成立!

综上,等式对任意n∈N时均成立!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式