如图,直线y=-4/3x+4和x轴、y轴的交点分别为b,c,点a的坐标是(-2,0)
动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动速度均为每秒1个单位长度,当其中一个动点达到终点时,它们都停止运动。设点M运动t(s)时,...
动点M从点A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动速度均为每秒1个单位长度,当其中一个动点达到终点时,它们都停止运动。设点M运动t(s)时,⊿MON的面积为S.
①求S与t的函数关系
②当点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在,说明理由;
③在运动过程中,当⊿MON为直角三角形时,求t的值。 展开
①求S与t的函数关系
②当点M在线段OB上运动时,是否存在S=4的情形?若存在,求出对应的t值;若不存在,说明理由;
③在运动过程中,当⊿MON为直角三角形时,求t的值。 展开
2013-11-22
展开全部
(1)求出x=0时y的值,求出y=0时x的值,求出B、C的坐标,根据勾股定理求出BC、AC,求出BA,即可得出答案;
(2)①过N作NH⊥x轴于H,推出当t=5秒时,同时到达终点,根据三角形的面积公式得出△MON的面积是S=12×OM×NH,代入求出即可;
②根据题意得出|t-2|×0.4t=4,根据t-2>0,得出方程(t-2)×0.4t=4,求出方程的解即可;
③求出cos∠B=0.6,分为三种情况:I、当∠NOM=90°时,N在y轴上,求出t=5;II、当∠NMO=90°时,得出t-2=3-0.6t,求出t,III、∠MNO不可能是90°,即可得出答案.解答:(1)证明:y=-43x+4,
∵当x=0时,y=4;
当y=0时,x=3,
∴B(3,0),C(0,4),
∵A(-2,0),
由勾股定理得:BC=32+42=5,
∵AB=3-(-2)=5,
∴AB=BC=5,
∴△ABC是等腰三角形;
(2)解:①∵C(0,4),B(3,0),BC=5,
∴sin∠B=OCBC=45=0.8.
过N作NH⊥x轴于H.
∵点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度,
又∵AB=BC=5,
∴当t=5秒时,同时到达终点,
∴△MON的面积是S=12×OM×NH,
∴S=12|t-2|×0.8t,
∴S=|t-2|×0.4t;
②点M在线段OB上运动时,存在S=4的情形.理由如下:
∵C(0,4),B(3,0),BC=5,
∴sin∠B=OCBC=45=0.8,
根据题意得:∵S=4,
∴|t-2|×0.4t=4,
∵点M在线段OB上运动,OA=2,
∴t-2>0,
即(t-2)×0.4t=4,
即t2-2t-10=0,
解得:t=1+11,t=1-11(舍去),
∴点M在线段OB上运动时,存在S=4的情形,此时对应的t值是(1+11)秒.
③∵C(0,4)B(3,0)BC=5,
∴cos∠B=OBBC=35=0.6.
分为三种情况:
I、当∠NOM=90°时,N在y轴上,即此时t=5;
II、当∠NMO=90°时,M、N的横坐标相等,即t-2=3-0.6t,解得:t=3.125,
III、∠MNO不可能是90°,
即在运动过程中,当△MON为直角三角形时,t的值是5秒或3.125秒.
(2)①过N作NH⊥x轴于H,推出当t=5秒时,同时到达终点,根据三角形的面积公式得出△MON的面积是S=12×OM×NH,代入求出即可;
②根据题意得出|t-2|×0.4t=4,根据t-2>0,得出方程(t-2)×0.4t=4,求出方程的解即可;
③求出cos∠B=0.6,分为三种情况:I、当∠NOM=90°时,N在y轴上,求出t=5;II、当∠NMO=90°时,得出t-2=3-0.6t,求出t,III、∠MNO不可能是90°,即可得出答案.解答:(1)证明:y=-43x+4,
∵当x=0时,y=4;
当y=0时,x=3,
∴B(3,0),C(0,4),
∵A(-2,0),
由勾股定理得:BC=32+42=5,
∵AB=3-(-2)=5,
∴AB=BC=5,
∴△ABC是等腰三角形;
(2)解:①∵C(0,4),B(3,0),BC=5,
∴sin∠B=OCBC=45=0.8.
过N作NH⊥x轴于H.
∵点M从A出发沿x轴向点B运动,同时动点N从点B出发沿线段BC向点C运动,运动的速度均为每秒1个单位长度,
又∵AB=BC=5,
∴当t=5秒时,同时到达终点,
∴△MON的面积是S=12×OM×NH,
∴S=12|t-2|×0.8t,
∴S=|t-2|×0.4t;
②点M在线段OB上运动时,存在S=4的情形.理由如下:
∵C(0,4),B(3,0),BC=5,
∴sin∠B=OCBC=45=0.8,
根据题意得:∵S=4,
∴|t-2|×0.4t=4,
∵点M在线段OB上运动,OA=2,
∴t-2>0,
即(t-2)×0.4t=4,
即t2-2t-10=0,
解得:t=1+11,t=1-11(舍去),
∴点M在线段OB上运动时,存在S=4的情形,此时对应的t值是(1+11)秒.
③∵C(0,4)B(3,0)BC=5,
∴cos∠B=OBBC=35=0.6.
分为三种情况:
I、当∠NOM=90°时,N在y轴上,即此时t=5;
II、当∠NMO=90°时,M、N的横坐标相等,即t-2=3-0.6t,解得:t=3.125,
III、∠MNO不可能是90°,
即在运动过程中,当△MON为直角三角形时,t的值是5秒或3.125秒.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询