几道简单高数求极限问题求大神解答!!! 要详细过程!!!
lim[(-2)^n + 3^n]/[(-2)^(n+1) + 3^(n+1)]
=lim[(-2/3)^n + 1]/[(-2/3)^n *(-2) + 3] 注:分子、分母同除以 3^n
=lim(0+1)/[0*(-2) + 3]
=1/3
lim√n *[√(n+1) - √(n-1)] 注:分子、分母同乘以 [√(n+1) + √(n-1)]
=lim√n * [√(n+1) -√(n-1)]*[√(n+1) +√(n-1)]/[√(n+1) + √(n-1)]
=lim √n * [(n+1) - (n-1)]/[√(n+1) + √(n-1)]
=lim √n * 2/[√(n+1) + √(n-1)]
=lim 2/[√(1+1/n) + √(1-1/n)] 注:分子、分母同除以 √n
=lim 2/[√(1+0) + √(1-0)]
=1
因为 1 - 1/n^2 = (n^2-1)/n^2 = (n+1)/n * (n-1)/n,所以,
lim(1-1/2^2)(1-1/3^2)……(1-1/n^2)
=lim(1/2*3/2)(2/3*4/3)……[(n-1)/n*(n+1)/n]
=lim[1/2*(n+1)/n]
=lim1/2*(1+1/n)
=lim1/2*(1+0)
=1/2
lim[1/(1+2) + 1/(1+2+3) + ……+1/(1+2+3+……+n)]
=lim{2/(2*3) + 2/(3*4) + ……+ 2/[n(n+1)]}
=2*lim{(1/2 - 1/3) + (1/3 - 1/4) + ……+ [1/n - 1/(n+1)]}
=2*lim[1/2 - 1/(n+1)]
=2*lim(1/2 - 0)
=1
么么哒