
用泰勒公式证明不等式
设f(x)在[0,1]二阶可导,且f(0)=f'(0)=f'(1)=0,f(1)=1求证:存在ξ∈(0,1),使|f''(ξ)|≥4...
设f(x)在[0,1]二阶可导,且f(0)=f'(0)=f'(1)=0,f(1)=1
求证:存在ξ∈(0,1),使|f''(ξ)|≥4 展开
求证:存在ξ∈(0,1),使|f''(ξ)|≥4 展开
展开全部
∵f(1/2)=f(0)+f'(0)/2+f''(θ)/8=f(1)-f'(1)/2+f''(φ)/8
∴|f''(θ)-f''(φ)|=8
∵|f''(θ)-f''(φ)|≤|f''(θ)|+|f''(φ)|≤2max|f''(x)|
∴max|f''(x)|≥4
∴存在ξ∈(0,1),使|f''(ξ)|≥4
∴|f''(θ)-f''(φ)|=8
∵|f''(θ)-f''(φ)|≤|f''(θ)|+|f''(φ)|≤2max|f''(x)|
∴max|f''(x)|≥4
∴存在ξ∈(0,1),使|f''(ξ)|≥4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询