求解释,关于概率论 中心极限定理的 这个是怎么来的
1个回答
展开全部
这里有一般结论: 如果(1维连续型)随机变量Y的概率密度函数为f(x),
那么对任意实数a > 0, Z = Y/a的密度函数为g(x) = a·f(ax).
证明: 由a > 0, Y, Z的分布函数满足:
P(Z ≤ b) = P(aZ ≤ ab) = P(Y ≤ ab), 对任意实数b成立,
即有恒等式: ∫{-∞,b} g(x)dx = ∫{-∞,ab} f(x)dx (这里f, g分别为Y, Z的密度函数).
两边对b求导即得g(b) = a·f(ab) (变限积分求导).
也即g(x) = a·f(ax).
对于你的问题, 直接应用上述结果:
因为S_n的密度函数为p^(*n)(x), 所以S_n/√n的密度函数为√n·p^(*n)(√n·x).
那么对任意实数a > 0, Z = Y/a的密度函数为g(x) = a·f(ax).
证明: 由a > 0, Y, Z的分布函数满足:
P(Z ≤ b) = P(aZ ≤ ab) = P(Y ≤ ab), 对任意实数b成立,
即有恒等式: ∫{-∞,b} g(x)dx = ∫{-∞,ab} f(x)dx (这里f, g分别为Y, Z的密度函数).
两边对b求导即得g(b) = a·f(ab) (变限积分求导).
也即g(x) = a·f(ax).
对于你的问题, 直接应用上述结果:
因为S_n的密度函数为p^(*n)(x), 所以S_n/√n的密度函数为√n·p^(*n)(√n·x).
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询