1个回答
展开全部
(1)
cos²x=1/2(1+cos2x),
sinxcosx=1/2sin2x
∴f(x)=1/4(1+cos2x)+√3/4sin2x+1
=1/4cos2x+√3/4sin2x+5/4
=1/2(√3/2sin2x+1/2cos2x)+5/4
=1/2sin(2x+π/6)+5/4
f(x)的最小正周期T=2π/2=π
(2)
∵x∈[π/12,π/4]
∴2x∈[π/6,π/2]
∴2x+π/6∈[π/3,2π/3]
∴当2x+π/6=π/2,即x=π/6时,
sin(2x+π/6)=1, f(x)max=7/4
当2x+π/6=π/3,或2x+π/6=2π/3时,
, 即x=π/12或x=π/4时,
sin(2x+π/6)=√3/2, f(x)min=(√3+5)/4
(3)
f(A)=1/2sin(2A+π/6)+5/4=3/2
sin(2A+π/6)=1/2
∵0<2A<2π ∴π/6<2A+π/6<13π/6
∴2A+π/6=5π/6
∴A=π/3
根据余弦定理
a²=b²+c²-2bccosA
=b²+c²-bc
∵b+c=2
∴b²+c²+2bc=4
∴4-2bc=b²+c²≥2bc
∴bc≤1
∴b²+c²-bc =4-2bc-bc
=4-3bc≥1
∴a²≥1
即a的最小值为1
cos²x=1/2(1+cos2x),
sinxcosx=1/2sin2x
∴f(x)=1/4(1+cos2x)+√3/4sin2x+1
=1/4cos2x+√3/4sin2x+5/4
=1/2(√3/2sin2x+1/2cos2x)+5/4
=1/2sin(2x+π/6)+5/4
f(x)的最小正周期T=2π/2=π
(2)
∵x∈[π/12,π/4]
∴2x∈[π/6,π/2]
∴2x+π/6∈[π/3,2π/3]
∴当2x+π/6=π/2,即x=π/6时,
sin(2x+π/6)=1, f(x)max=7/4
当2x+π/6=π/3,或2x+π/6=2π/3时,
, 即x=π/12或x=π/4时,
sin(2x+π/6)=√3/2, f(x)min=(√3+5)/4
(3)
f(A)=1/2sin(2A+π/6)+5/4=3/2
sin(2A+π/6)=1/2
∵0<2A<2π ∴π/6<2A+π/6<13π/6
∴2A+π/6=5π/6
∴A=π/3
根据余弦定理
a²=b²+c²-2bccosA
=b²+c²-bc
∵b+c=2
∴b²+c²+2bc=4
∴4-2bc=b²+c²≥2bc
∴bc≤1
∴b²+c²-bc =4-2bc-bc
=4-3bc≥1
∴a²≥1
即a的最小值为1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询