由等比数列和等差数列之积组成的数列怎样求通项公式
1个回答
展开全部
用交错相差法求。
a(n) = a+(n-1)d,
b(n) = bq^(n-1),
t(n) = a(1)b(1) + a(2)b(2) + a(3)b(3) + ... + a(n-1)b(n-1) + a(n)b(n)
= a*b + (a+d)bq + (a+2d)bq^2 + ... + [a+(n-2)d]bq^(n-2) + [a+(n-1)d]bq^(n-1),
q=1时,b(n) = b, t(n) = b[a(1)+a(2)+...+a(n)] = b[na + n(n-1)d/2] = nab + n(n-1)bd/2.
q不为1时,qt(n) = abq + (a+d)bq^2 + ... + [a+(n-2)d]bq^(n-1) + [a+(n-1)d]bq^n,
(1-q)t(n) = t(n) - qt(n) = ab + dbq + dbq^2 + ... + dbq^(n-1) - [a+(n-1)d]bq^n
= ab + dbq[1 + q + ... + q^(n-2)] - [a+(n-1)d]bq^n
= ab + dbq[1-q^(n-1)]/(1-q) - [a+(n-1)d]bq^n
= ab + dbq/(1-q) - [a + d/(1-q) + (n-1)d]bq^n,
t(n) = ab/(1-q) + dbq/(1-q)^2 - [a/(1-q)+d/(1-q)^2 + (n-1)d/(1-q)]bq^n.
综合,有,
q=1时,a(1)b(1)+a(2)b(2)+...+a(n)b(n) = nab + n(n-1)db/2.
q不为1时,a(1)b(1)+a(2)b(2)+...+a(n)b(n) = ab/(1-q) + dbq/(1-q)^2 - [a/(1-q) + d/(1-q)^2 + (n-1)d/(1-q)]bq^n.
a(n) = a+(n-1)d,
b(n) = bq^(n-1),
t(n) = a(1)b(1) + a(2)b(2) + a(3)b(3) + ... + a(n-1)b(n-1) + a(n)b(n)
= a*b + (a+d)bq + (a+2d)bq^2 + ... + [a+(n-2)d]bq^(n-2) + [a+(n-1)d]bq^(n-1),
q=1时,b(n) = b, t(n) = b[a(1)+a(2)+...+a(n)] = b[na + n(n-1)d/2] = nab + n(n-1)bd/2.
q不为1时,qt(n) = abq + (a+d)bq^2 + ... + [a+(n-2)d]bq^(n-1) + [a+(n-1)d]bq^n,
(1-q)t(n) = t(n) - qt(n) = ab + dbq + dbq^2 + ... + dbq^(n-1) - [a+(n-1)d]bq^n
= ab + dbq[1 + q + ... + q^(n-2)] - [a+(n-1)d]bq^n
= ab + dbq[1-q^(n-1)]/(1-q) - [a+(n-1)d]bq^n
= ab + dbq/(1-q) - [a + d/(1-q) + (n-1)d]bq^n,
t(n) = ab/(1-q) + dbq/(1-q)^2 - [a/(1-q)+d/(1-q)^2 + (n-1)d/(1-q)]bq^n.
综合,有,
q=1时,a(1)b(1)+a(2)b(2)+...+a(n)b(n) = nab + n(n-1)db/2.
q不为1时,a(1)b(1)+a(2)b(2)+...+a(n)b(n) = ab/(1-q) + dbq/(1-q)^2 - [a/(1-q) + d/(1-q)^2 + (n-1)d/(1-q)]bq^n.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询