设函数fx=x平方-1分之x 判断证明在(-1,1)上的单调性

皮皮鬼0001
推荐于2016-12-01 · 经历曲折坎坷,一生平淡。
皮皮鬼0001
采纳数:38057 获赞数:137620

向TA提问 私信TA
展开全部
解由f(x)=x/(x^2-1)
设x1.x2属于(-1,1)且x1<x2
即f(x1)-f(x2)
=x1/(x1^2-1)-x2/(x2^2-1)
=[x1(x2^2-1)-x2(x1^2-1)]/(x2^2-1)(x1^2-1)
=[x1x2^2-x2x1^2+x2-x1]/(x2^2-1)(x1^2-1)
=[x1x2(x2-x1)+(x2-x1)]/(x2^2-1)(x1^2-1)
=[(x1x2+1)(x2-x1)]/(x2^2-1)(x1^2-1)
由x1.x2属于(-1,1)
知x1x2>-1
即x1x2+1>0
又由x1<x2
即x2-x1>0
又由x1.x2属于(-1,1)
知(x2^2-1)<0,(x1^2-1)<0
即(x2^2-1)(x1^2-1)>0
即[(x1x2+1)(x2-x1)]/(x2^2-1)(x1^2-1)>0
即f(x1)-f(x2)>0
即证明f(x)在(-1,1)是减函数。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式