2个回答
展开全部
函数极限定义:设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当|x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。
如limx^3=27X趋近3时的极限:因为x趋近3,只考虑x=3近旁的X值即可,不妨令|x-3|<12<x<4于是有|x^3-27|=|X-3||x^2+3x+9|<37|x-3|。
因此,对于任意ε>0,总存在正数δ=min(1,ε/37)取最小值,使得当|x-3|<δ时,|f(x)-27|<ε成立,故,27是函数f(x)=x^3在x=3处的极限。
N的相应性
一般来说,N随ε的变小而变大,因此常把N写作N(ε),以强调N对ε的变化而变化的依赖性。但这并不意味着N是由ε唯一确定的:(比如若n>N使|xn-a|<ε成立,那么显然n>N+1、n>2N等也使|xn-a|<ε成立)。重要的是N的存在性,而不在于其值的大小。
Sievers分析仪
2025-01-06 广告
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
函数极限定义: 设函数f(x)在x0处的某一去心邻域内有定义,若存在常数A,对于任意ε>0,总存在正数δ,使得当 |x-xo|<δ时,|f(x)-A|<ε成立,那么称A是函数f(x)在x0处的极限。 如limx^3=27 X趋近3时的极限: 因为x趋近3,我们只考虑x=3近旁的X值即可,不妨令|x-3|<1 2<x<4 于是有|x^3-27|=|X-3||x^2+3x+9|<37|x-3| 因此,对于任意ε>0,总存在正数δ=min(1,ε/37)取最小值,使得当 |x-3|<δ时,|f(x)-27|<ε成立, 故,27是函数f(x)=x^3在x=3处的极限。
记得采纳啊
记得采纳啊
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询