2个回答
展开全部
19. √[x/(x^2+x+1)]+√[x/(x^2-x+1)]
= √[1/(x+1+1/x)]+√[1/(x-1+1/x)]
= 1/√[(x+1/x)^2-1]+1/√[(x+1/x)^2-3]
= 1/2+1/√2 = (1+√2)/2
18 通项 1/[(n+1)√n+n√(n+1)]
= [(n+1)√n-n√(n+1)]/[n(n+1)^2-(n+1)n^2]
= [(n+1)√n-n√(n+1)]/[n(n+1)]
= 1/√n - 1/√(n+1)
则 原式 = 1-1/√2+1/√2-1/√3+...+1/√2024-1/√2025
= 1-1/√2025 = 1-1/45 = 44/45
= √[1/(x+1+1/x)]+√[1/(x-1+1/x)]
= 1/√[(x+1/x)^2-1]+1/√[(x+1/x)^2-3]
= 1/2+1/√2 = (1+√2)/2
18 通项 1/[(n+1)√n+n√(n+1)]
= [(n+1)√n-n√(n+1)]/[n(n+1)^2-(n+1)n^2]
= [(n+1)√n-n√(n+1)]/[n(n+1)]
= 1/√n - 1/√(n+1)
则 原式 = 1-1/√2+1/√2-1/√3+...+1/√2024-1/√2025
= 1-1/√2025 = 1-1/45 = 44/45
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询