已知锐角三角形ABC中,sin(A+B)=3/5,sin(A-B)=1/5 求tanB

 我来答
zxjerry07
推荐于2016-02-17 · TA获得超过4432个赞
知道大有可为答主
回答量:3129
采纳率:0%
帮助的人:1466万
展开全部
sin(A+B)=3/5,sin(A-B)=1/5
sin(a+b)=sinAcosB+sinBcosA=3/5
sin(a-b)=sinAcosB-sinBcosA=1/5
两式相加相减后可得:
sinAcosB=2/5
sinBcosA=1/5
将两式相除,可得tanA=2tanB
tan(B)=sinB/cosB=sinBcosA/cosAcosB
cos(A)cos(B)=1/2[cos(A+B)+cos(A-B)]=1/2[4/5+2根号6/5]=(根号6-2)/5
tanB=1/(根号6-2)=(根号6+2)/2
祝学习进步
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式