设三元二次型f(x1,x2,x3)=xTAx的矩阵满足A^2+2A=0 且a1=(0,1,1)T是齐次方程组Ax的基础解系求二次型表达式

我只想问A的秩如何确定为2的。是因为a1非零解所以r(A)<3,然后有两个特征值然后确定的么?... 我只想问A的秩如何确定为2的。是因为a1非零解所以r(A)<3,然后有两个特征值然后确定的么? 展开
lry31383
高粉答主

2014-11-06 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
已知a1=(0,1,1)T是齐次方程组Ax=0的基础解系
所以 n-r(A) = 1
所以 R(A) = n-1 = 3-1 = 2
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2014-11-04
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式