如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数

如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余... 如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40°.(1)求∠NMB的度数;(2)如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现有什么样的规律性,试证明之. 展开
 我来答
sh5215125
高粉答主

2017-07-15 · 说的都是干货,快来关注
知道大有可为答主
回答量:1.4万
采纳率:96%
帮助的人:5743万
展开全部

【分析】此题主要是让学生掌握垂直平分线定理及等腰三角形三线合一定理的运用。

作辅助线连接AM,因MN是AB的垂直平分线,故AM=AB,推出∠MAB=∠B,进而推出∠AMB=180°-2∠B,因AB=AC,推出∠B=∠ACB,则∠A=180°-2∠B,推出∠AMB=∠A,根据三线合一可知,∠BMN=1/2∠AMB=1/2∠A.

【解答】

(1)

∵∠A=40°,AB=AC,

∴∠B=∠ACB=(180°-∠A)/2=70°,

∵MN⊥AB,

∴∠NMB=90°-∠B=20°.

(2)

∵∠A=70°,AB=AC,

∴∠B=∠ACB=(180°-∠A)/2=55°,

∵MN⊥AB,

∴∠NMB=90°-∠B=35°.

(3)可以看出,∠NMB=∠A/2.

证明:

连接AM,

∵MN垂直平分AB(已知),

∴AM=BM(垂直平分线上的点到线段两端距离相等),

∴∠MAB=∠B(等边对等角),

∴∠AMB=180°-∠MAB-∠B=180°-2∠B(三角形内角和180°),

∵AB=AC(已知),

∴∠B=∠ACB(等边对等角),

∴∠BAC=180°-∠B-∠ACB=180°-2∠B(三角形内角和180°),

∴∠AMB=∠BAC=40°(等量代换),

∴∠NMB=NMA=1/2∠AMB(三线合一)。

∴∠NMB=1/2∠A(等量代换).

47352008
2018-05-07 · TA获得超过233个赞
知道小有建树答主
回答量:242
采纳率:80%
帮助的人:28万
展开全部
(1)题目解析::只知道∠A=40°,就要用定理来推其他角的度数,可以推算出来的角度数都推算出来,就会浮现答案了
推算过程:因为AB=AC,推出∠ABC是等腰三角形;定理:三角形内角和=180度(直线也为180°),∠B=∠ACB=(180°-40)/2=70° ∠ACM=180°-∠ACB=180°-70°=110°,AC和MN相交的点记作H来表示,那么三角形ANH已经知道2个角的度数,180°-90°-40°=∠AHN=50°,对等角相等的定理:∠MHC=50°,三角形MHC也已经知道两个角的度数: ∠ACM=110°和∠MHC=50° 还是内角和定理180° ,所以∠NMB=180°-110°-50°=20°,答案是:∠NMB=20°
(2)同上,将40°改为70°运算过程一样:∠NMB=180°-(∠ACM=125°)-(∠MHC=20°)=35°,答案:是当∠A=70°时,∠NMB=35°
(3)任何三角形组合的图(其中一个为等腰三角形或等边三角形),知道这个三角形其中一个角的度数,都能推算出其他角的度数,此为其规律;根据这个规律即可证明之。
几何技巧:几何定理要牢记,将题目整体解析一下,就可以推算了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
正渊飛S
2014-10-18 · 超过57用户采纳过TA的回答
知道答主
回答量:173
采纳率:100%
帮助的人:49.3万
展开全部
(1)∵在△ABC中,AB=AC,∠A=40°,
∴∠ABC=∠ACB=70°,
∵AB的垂直平分线交AB于点N,交BC的延长线于点M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=20°;

(2)∵在△ABC中,AB=AC,∠A=70°,
∴∠ABC=∠ACB=55°,
∵AB的垂直平分线交AB于点N,交BC的延长线于点M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=35°;

(3)∠NMB=
1
2
∠A.
理由:∵在△ABC中,AB=AC,
∴∠ABC=∠ACB=
180°?∠A
2

∵AB的垂直平分线交AB于点N,交BC的延长线于点M,
∴MN⊥AB,
∴∠NMB=90°-∠ABC=
1
2
∠A.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
X终极系列

2017-07-24 · TA获得超过682个赞
知道小有建树答主
回答量:854
采纳率:41%
帮助的人:123万
展开全部
解:由题意得,
∠B等于角ACB,角mnb等于90度
因为角a等于40度
所以角A=角ACB=二分之一(180度-∠A)
=二分之一(180°-40°)
=二分之一乘以140°
=70°
因为∠MNB=90°
所以在三角形MNB中
∠NMB=180°-∠MNB-∠A
=180°-90°-70°
=20°
2.因为角a等于70度
所以角A=角ACB=二分之一(180度-∠A)
=二分之一(180°-70°)
=二分之一乘以110°
=55°
因为∠MNB=90°
所以在三角形MNB中
∠NMB=180°-∠MNB-∠A
=180°-90°-55°
=35°
3.
证明:
连接AM,
∵MN垂直平分AB
∴AM=BM
∴∠MAB=∠B
∴∠AMB=180°-∠MAB-∠B=180°-2∠B
∵AB=AC
∴∠B=∠ACB
∴∠BAC=180°-∠B-∠ACB=180°-2∠B
∴∠AMB=∠BAC=40°
∴∠NMB=NMA=二分之一∠AMB
∴∠NMB=二分之一∠A
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
善行天下3000
2018-01-01
知道答主
回答量:1
采纳率:0%
帮助的人:899
展开全部
。。。٩( ᐛ )و元旦快乐
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式