已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}为等比数列;(Ⅱ)若bn=(2n
已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}为等比数列;(Ⅱ)若bn=(2n-1)(an+1),求数列{bn}的前n项...
已知数列{an}满足条件:a1=1,an+1=2an+1,n∈N*.(Ⅰ)求证:数列{an+1}为等比数列;(Ⅱ)若bn=(2n-1)(an+1),求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
解答:(Ⅰ)证明:由题意得an+1+1=2(an+1),…(3分)
又a1+1=2≠0. …(4分)
所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)
(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)
故bn=(2n?1)2n
∴Tn=b1+b2+b3+…+bn
=1?2+3?22+5?23+…+(2n-1)2n
2Tn=1?22+3?23+5?24+…+(2n-1)2n+1…(8分)
错位相减得-Tn=2+2?22+2?23+2?24+…+2?2n-(2n-1)2n+1…(9分)
=2[
]?2?(2n?1)2n+1=(3-2n)2n+1-6…(11分)
从而得Tn=(2n-3)2n+1+6…(12分)
又a1+1=2≠0. …(4分)
所以数列{an+1}是以2为首项,2为公比的等比数列. …(5分)
(Ⅱ)解:由(1)知an+1=2?2n?1即an=2n?1,…(7分)
故bn=(2n?1)2n
∴Tn=b1+b2+b3+…+bn
=1?2+3?22+5?23+…+(2n-1)2n
2Tn=1?22+3?23+5?24+…+(2n-1)2n+1…(8分)
错位相减得-Tn=2+2?22+2?23+2?24+…+2?2n-(2n-1)2n+1…(9分)
=2[
2(1?2n) |
1?2 |
从而得Tn=(2n-3)2n+1+6…(12分)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询