已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.当x∈(-3,2)时f(x
已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.当x∈(-3,2)时f(x)>0.(Ⅰ)求f(x)在[0,1]内的值...
已知函数f(x)=ax2+(b-8)x-a-ab,当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.当x∈(-3,2)时f(x)>0.(Ⅰ)求f(x)在[0,1]内的值域;(Ⅱ)若ax2+bx+c≤0的解集为R,求实数c的取值范围..
展开
展开全部
(Ⅰ)∵当x∈(-∞,-3)∪(2,+∞)时,f(x)<0.当x∈(-3,2)时f(x)>0
∴-3,2是方程ax2+(b-8)x-a-ab=0的两根,
∴可得
,所以 a=-3 b=5,
∴f(x)=-3x2-3x+18=-3(x+
)2+18.75
函数图象关于x=-0.5对称,且抛物线开口向下
∴在区间[0,1]上f(x)为减函数,所以函数的最大值为f(0)=18,最小值为f(1)=12
故f(x)在[0,1]内的值域为[12,18]
(Ⅱ)由(I)知,不等式ax2+bx+c≤0化为:-3x2+5x+c≤0
因为二次函数y=:-3x2+5x+c的图象开口向下,要使-3x2+5x+c≤0的解集为R,只需
,
即 25+12c≤0?c≤?
,
∴实数c的取值范围(?∞,?
].
∴-3,2是方程ax2+(b-8)x-a-ab=0的两根,
∴可得
|
∴f(x)=-3x2-3x+18=-3(x+
1 |
2 |
函数图象关于x=-0.5对称,且抛物线开口向下
∴在区间[0,1]上f(x)为减函数,所以函数的最大值为f(0)=18,最小值为f(1)=12
故f(x)在[0,1]内的值域为[12,18]
(Ⅱ)由(I)知,不等式ax2+bx+c≤0化为:-3x2+5x+c≤0
因为二次函数y=:-3x2+5x+c的图象开口向下,要使-3x2+5x+c≤0的解集为R,只需
|
即 25+12c≤0?c≤?
25 |
12 |
∴实数c的取值范围(?∞,?
25 |
12 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询