已知函数f(x)=2x+33x,数列{an}满足:a1=1,a n+1=f(1an),(1)求数列{an}的通项公式;(2)令Tn=a1
已知函数f(x)=2x+33x,数列{an}满足:a1=1,an+1=f(1an),(1)求数列{an}的通项公式;(2)令Tn=a1a2-a2a3+a3a4-a4a5+...
已知函数f(x)=2x+33x,数列{an}满足:a1=1,a n+1=f(1an),(1)求数列{an}的通项公式;(2)令Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1求Tn;(3)设bn=1an?1an(n≥2),b1=3,Sn=b1+b2+b3+…+bn,若Sn<k?20042对一切n∈N*成立,求最小的正整数m的值.
展开
1个回答
展开全部
(1)∵a n+1=f(
)=
=an+
∴an+1-an=
∴数列{an}是以
为公差,首项a1=1的等差数列
∴an=
n+
(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-
(a2+a4+…+a2n)
=-
×
=-
(2n2+3n)
(3)当n≥2时,bn=
=
=
(
?
)
当n=1时,上式同样成立
∴sn=b1+b2+…+bn=
[(1-
)+(
-
)+…+(
?
)]=
1 |
an |
2+3an |
3 |
2 |
3 |
∴an+1-an=
2 |
3 |
∴数列{an}是以
2 |
3 |
∴an=
2 |
3 |
1 |
3 |
(2)Tn=a1a2-a2a3+a3a4-a4a5+…+a2n-1a2n-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-
4 |
3 |
=-
4 |
3 |
n×(
| ||||||
2 |
4 |
9 |
(3)当n≥2时,bn=
1 |
an?1an |
1 | ||||||||
(
|
9 |
2 |
1 |
2n?1 |
1 |
2n+1 |
当n=1时,上式同样成立
∴sn=b1+b2+…+bn=
9 |
2 |
1 |
3 |
1 |
3 |
1 |
5 |
1 |
2n?1 |
1 |
2n+1 |