
(2014?西城区二模)在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与 x轴
(2014?西城区二模)在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记...
(2014?西城区二模)在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与 x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作lPBM.(1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),①直线l1:y=2,直线l2:y=x+2,直线l3:y=3x+2,直线l4:y=-2x+2都经过点P,在直线l1,l2,l3,l4中,是⊙O的“x关联直线”的是______;②若直线lPBM是⊙O的“x关联直线”,则点M的横坐标xM的最大值是______;(2)点A(2,0),⊙A的半径为1,①若P(-1,2),⊙A的“x关联直线”lPBM:y=kx+k+2,点M的横坐标为xM,当xM最大时,求k的值;②若P是y轴上一个动点,且点P的纵坐标yp>2,⊙A的两条“x关联直线”lPCM,lPDN是⊙A的两条切线,切点分别为C,D,作直线CD与x轴交于点E,当点P的位置发生变化时,AE的长度是否发生改变?并说明理由.
展开
1个回答
展开全部
(1)①l3,l4;
分析如下:

根据题意,如图1,l1,l2与⊙O没有交点,
对l3,过点O作OB⊥AC于B,
∵A(0,2),C(?
,0),
∴AO=2,C0=
,
∴根据勾股定理,AC=
.
∴根据面积相等,OB=
=1,
∵⊙O半径为1,
∴AC切⊙O于B,
∴l3是⊙O的“x关联直线”.
对l4,显然与⊙O有两个交点,故l4是⊙O的“x关联直线”.
综上所述,l3,l4是⊙O的“x关联直线”.
②xM=
;
分析如下:

如图2,PM与⊙O相切于B点时,M的横坐标xM最大,连接OB,则OB⊥PM,
在Rt△OPB中,
∵PO=2,OB=1,
∴∠OPB=30°,
∴OM=tan∠OPB?OP=
?2=
,
所以点M的横坐标xM最
分析如下:
根据题意,如图1,l1,l2与⊙O没有交点,
对l3,过点O作OB⊥AC于B,
∵A(0,2),C(?
2
| ||
3 |
∴AO=2,C0=
2
| ||
3 |
∴根据勾股定理,AC=
4
| ||
3 |
∴根据面积相等,OB=
AO?OC |
AC |
∵⊙O半径为1,
∴AC切⊙O于B,
∴l3是⊙O的“x关联直线”.
对l4,显然与⊙O有两个交点,故l4是⊙O的“x关联直线”.
综上所述,l3,l4是⊙O的“x关联直线”.
②xM=
2
| ||
3 |
分析如下:
如图2,PM与⊙O相切于B点时,M的横坐标xM最大,连接OB,则OB⊥PM,
在Rt△OPB中,
∵PO=2,OB=1,
∴∠OPB=30°,
∴OM=tan∠OPB?OP=
| ||
3 |
2
| ||
3 |
所以点M的横坐标xM最
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询