如图,是两个可以自由转动的均匀转盘A,B,转盘A被分成4等份,每份分别标上1,2,3,4四个数字;转盘B被

如图,是两个可以自由转动的均匀转盘A,B,转盘A被分成4等份,每份分别标上1,2,3,4四个数字;转盘B被分成6等份,每份分别标上1,2,3,4,5,6六个数字,现为甲,... 如图,是两个可以自由转动的均匀转盘A,B,转盘A被分成4等份,每份分别标上1,2,3,4四个数字;转盘B被分成6等份,每份分别标上1,2,3,4,5,6六个数字,现为甲,乙两人设计一个游戏,其规则如下: ①同时自由转盘转盘A,B; ②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘.如果得到的积是偶数,那么甲胜;如果得到的积是奇数,则乙胜. 你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明道理. 展开
 我来答
mraST31
推荐于2016-12-01 · TA获得超过196个赞
知道答主
回答量:127
采纳率:0%
帮助的人:132万
展开全部
解:这个游戏不公平,列表如下:
由上表所知总积数共24种,其中积是奇数的有6种,积是偶数的有18种,
因此甲获胜的可能性是
乙获胜的可能性是
把游戏中由A,B两个转盘中所指的两个数字的“积”改成“和”,游戏就公平了.
因为在A盘和B盘中指针所指的两个数字作和共有24种情况,而A盘中每个数字与B盘中的各数字作和得到偶数和奇数的种数都是12,所以甲,乙获胜的可能性都为
解法二:不公平.∵P(奇)= ;P(偶)= .∴P(偶)>P(奇)∴不公平.
新规则:(1)同时自用转动转盘A和B;
(2)转盘停止后,指针各指向一个数字,用所指的两个数字作和,如果得到的和是偶数,则甲胜;如果得到的和是奇数,则乙胜.
理由:∵P(奇)= ;P(偶)= ,∴P(偶)=P(奇),∴公平.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式