函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a

函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.... 函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围. 展开
 我来答
猴妒障73
推荐于2016-05-26 · 超过71用户采纳过TA的回答
知道答主
回答量:138
采纳率:66%
帮助的人:67.1万
展开全部
(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,
令f′(x)=0,即3ax2+6x+3=0,则△=36(1-a)
①若a>1时,则△<0,f′(x)>0,∴f(x)在R上是增函数;
②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=
?1+
1?a
a
,x2=
?1?
1?a
a

当0<a<1时,则当x∈(-∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(-∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;
当a<0时,则当x∈(-∞,x1)或(x2,+∞),f′(x)<0,故函数在(-∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;
(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,
当a<0时,f(x)在区间(1,2)是增函数,
当且仅当:f′(1)≥0且f′(2)≥0,解得-
5
4
≤a<0

a的取值范围[?
5
4
,0
)∪(0,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式