函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a
函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围....
函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.
展开
1个回答
展开全部
(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,
令f′(x)=0,即3ax2+6x+3=0,则△=36(1-a)
①若a>1时,则△<0,f′(x)>0,∴f(x)在R上是增函数;
②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=
,x2=
,
当0<a<1时,则当x∈(-∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(-∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;
当a<0时,则当x∈(-∞,x1)或(x2,+∞),f′(x)<0,故函数在(-∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;
(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,
当a<0时,f(x)在区间(1,2)是增函数,
当且仅当:f′(1)≥0且f′(2)≥0,解得-
≤a<0,
a的取值范围[?
,0)∪(0,+∞).
令f′(x)=0,即3ax2+6x+3=0,则△=36(1-a)
①若a>1时,则△<0,f′(x)>0,∴f(x)在R上是增函数;
②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=
?1+
| ||
a |
?1?
| ||
a |
当0<a<1时,则当x∈(-∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(-∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;
当a<0时,则当x∈(-∞,x1)或(x2,+∞),f′(x)<0,故函数在(-∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;
(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,
当a<0时,f(x)在区间(1,2)是增函数,
当且仅当:f′(1)≥0且f′(2)≥0,解得-
5 |
4 |
a的取值范围[?
5 |
4 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询