操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕

操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;(2)再将图①中的△CBE沿对称轴EF折... 操作与探究:(1)图①是一块直角三角形纸片.将该三角形纸片按如图方法折叠,是点A与点C重合,DE为折痕.试证明△CBE等腰三角形;(2)再将图①中的△CBE沿对称轴EF折叠(如图②).通过折叠,原三角形恰好折成两个重合的矩形,其中一个是内接矩形,另一个是拼合(指无缝无重叠)所成的矩形,我们称这样的两个矩形为“组合矩形”.你能将图③中的△ABC折叠成一个组合矩形吗?如果能折成,请在图③中画出折痕;(3)请你在图④的方格纸中画出一个斜三角形,同时满足下列条件:①折成的组合矩形为正方形;②顶点都在格点(各小正方形的顶点)上;(4)有一些特殊的四边形,如菱形,通过折叠也能折成组合矩形(其中的内接矩形的四个顶点分别在原四边形的四条边上).请你进一步探究,一个非特殊的四边形(指除平行四边形、梯形外的四边形)满足何条件时,一定能折成组合矩形? 展开
 我来答
小新第三7Pw
推荐于2016-12-01 · TA获得超过205个赞
知道答主
回答量:184
采纳率:66%
帮助的人:72.6万
展开全部
解:(1)∵点A与点C重合,
∴AD=DC,∠ADE=∠EDC=90°,
∴DE∥BC,
∴DE是△ACB的中位线,
AE=BE,
∵AE=CE,
∴CE=BE,
∴△CBE是等腰三角形;

(2)如图1所示(共有三种折法,折痕画对均可);

(3)如图2所示(答案不唯一,只要体现出一条边与该边上的高相等即可);

(4)当一个四边形的两条对角线互相垂直时,可以折成一个组合矩形.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式