已知等差数列{a n }的前n项和为S n ,且a 2 =1,S 11 =33.(1)求{a n }的通项公式;(2)设 b n =(
已知等差数列{an}的前n项和为Sn,且a2=1,S11=33.(1)求{an}的通项公式;(2)设bn=(14)an,求证:{bn}是等比数列,并求数列{an?bn}的...
已知等差数列{a n }的前n项和为S n ,且a 2 =1,S 11 =33.(1)求{a n }的通项公式;(2)设 b n =( 1 4 ) a n ,求证:{b n }是等比数列,并求数列{a n ?b n }的前n项和T n .
展开
蛙塞三的6300
推荐于2016-05-02
·
TA获得超过409个赞
知道答主
回答量:173
采纳率:66%
帮助的人:60.9万
关注
(1)由已知,且a 2 =a 1 +d=1,S 11 =11a 1 +55d=33,解得a 1 = ,d= ,a n = . (2) b n =( ) a n =( ) n , = ,数列b n }是以 为公比的等比数列. a n ?b n = .( )n=n?( ) n+1 T n =1× ( ) 2 +2× ( ) 3 +…+n?( ) n+1 ① T n =+1× ( ) 3 +2 ( ) 4 +…+(n-1)?( ) n+1 +…+n?( ) n+2 ② ②-①得 T n = ( ) 2 + ( ) 3 + ( ) 4 …+( ) n+1 -n?( ) n+2 = -n?( ) n+2 ∴T n =1-( ) n -n?( ) n+1 =1- . |
收起
为你推荐: