
设数列{an}的前n项和为Sn,点(an,Sn)在直线y=32x?1上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在an与an+
设数列{an}的前n项和为Sn,点(an,Sn)在直线y=32x?1上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn...
设数列{an}的前n项和为Sn,点(an,Sn)在直线y=32x?1上.(Ⅰ)求数列{an}的通项公式;(Ⅱ)在an与an+1之间插入n个数,使这n+2个数组成公差为dn的等差数列,求数列{1dn}的前n项和Tn.
展开
1个回答
展开全部
(Ⅰ)由题设知,Sn=
an-1,得Sn?1=
an?1-1(n∈N*,n≥2),
两式相减得:an=
(an?an?1),即an=3an-1(n∈N*,n≥2),
又S1=
a1?1得a1=2,
所以数列{an}是首项为2,公比为3的等比数列,
所以an=2?3n?1;
(Ⅱ)由(Ⅰ)知an+1=2?3n,an=2?3n?1,
因为an+1=an+(n+1)dn,所以dn=
,
所以
=
,
令Tn=
+
+
+…+
,
则Tn=
+
+
+…+
①,
Tn=
+
+
+…+
3 |
2 |
3 |
2 |
两式相减得:an=
3 |
2 |
又S1=
3 |
2 |
所以数列{an}是首项为2,公比为3的等比数列,
所以an=2?3n?1;
(Ⅱ)由(Ⅰ)知an+1=2?3n,an=2?3n?1,
因为an+1=an+(n+1)dn,所以dn=
4×3n?1 |
n+1 |
所以
1 |
dn |
n+1 |
4×3n?1 |
令Tn=
1 |
d1 |
1 |
d2 |
1 |
d3 |
1 |
dn |
则Tn=
2 |
4×30 |
3 |
4×31 |
4 |
4×32 |
n+1 |
4×3n?1 |
1 |
3 |
2 |
4×31 |
3 |
4×32 |
4 |
4×33 |