如图1,△ABC中,∠BAC=90°,BA=AC,(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求

如图1,△ABC中,∠BAC=90°,BA=AC,(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求证:∠ADB=∠CDF.(2)若D,M为... 如图1,△ABC中,∠BAC=90°,BA=AC,(1)D为AC的中点,连BD,过A点作AE⊥BD于E点,交BC于F点,连DF,求证:∠ADB=∠CDF.(2)若D,M为AC上的三等分点,如图2,连BD,过A作AE⊥BD于点E,交BC于点F,连MF,判断∠ADB与∠CMF的大小关系并证明. 展开
 我来答
改密死1024
推荐于2016-08-22 · TA获得超过111个赞
知道答主
回答量:127
采纳率:80%
帮助的人:60.5万
展开全部
(1)证明:作AG平分∠BAC,交BD于点G     
∵∠BAC=90°,AE⊥BD,
∴∠DAE+∠ADB=∠ABE+∠ADB=90°,
∴∠ABG=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠C=∠BAG=45°,
∠ABG=∠CAF
AB=AC
∠C=∠BAG=45°

∴△BAG≌△CAF,(ASA)
∴AG=CF,
又∵AD=CD,∠GAD=∠C=45°,
∴△AGD≌△DFC,(SAS)
∴∠ADB=∠CDF;

(2)解:∠ADB=∠CMF.
证明:作AG平分∠BAC,交BD于点G
∵∠BAC=90°,AE⊥BD,
∴∠DAE+∠ADB=∠ABE+∠ADB=90°,
∴∠ABG=∠CAF,
∵△ABC是等腰直角三角形,
∴AB=AC,∠C=∠BAG=45°,
∠ABG=∠CAF
AB=AC
∠C=∠BAG=45°

∴△BAG≌△CAF,(ASA)
∴AG=CF,
又∵AD=CM,∠GAD=∠C=45°,
∴△AGD≌△CFM,(SAS)
∴∠ADG=∠CMF;
即:∠ADB=∠CMF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式