已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3?a4=117,a2+a5=22.(1)求通项an;(2)若数列{b

已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3?a4=117,a2+a5=22.(1)求通项an;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数... 已知公差大于零的等差数列{an}的前n项和为Sn,且满足a3?a4=117,a2+a5=22.(1)求通项an;(2)若数列{bn}满足bn=Snn+c,是否存在非零实数c使得{bn}为等差数列?若存在,求出c的值;若不存在,请说明理由. 展开
 我来答
吖啊啊啊安额
推荐于2016-05-07 · TA获得超过122个赞
知道答主
回答量:129
采纳率:75%
帮助的人:63.4万
展开全部
(1)由等差数列的性质,得a3+a4=a2+a5=22,
又∵a3?a4=117,∴a3、a4是方程x2-22x+117=0的解,
结合公差大于零,解得a3=9,a4=13,
∴公差d=a4-a3=13-9=4,首项a1=a3-2d=1.
因此,数列{an}的通项公式为an=a1+(n-1)d=1+4(n-1)=4n-3.
(2)由(1)知:Sn=
n(1+4n?3)
2
=2n2-n,
所以bn=
S n
n+c
=
2n2?n
n+c

故b1=
1
c+1
,b2=
6
c+2
,b3=
15
c+3

令2b2=b1+b3,即
12
c+2
=
1
c+1
+
15
c+3
,化简得2c2+c=0.
因为c≠0,故c=-
1
2
,此时bn=
2n2?n
n?
1
2
=2n.
当n≥2时,bn-bn-1=2n-2(n-1)=2,符合等差数列的定义
∴c=-
1
2
时,bn=2n.(n∈N+
由此可得,当c=-
1
2
时,{bn}成以2为首项、公差为2的等差数列.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式