已知:△ABC是等边三角形,△BDC是等腰三角形,其中∠BDC=120°,过点D作∠EDF=60°,分别交AB于E,交AC

已知:△ABC是等边三角形,△BDC是等腰三角形,其中∠BDC=120°,过点D作∠EDF=60°,分别交AB于E,交AC于F,连接EF.(1)若BE=CF,求证:①△D... 已知:△ABC是等边三角形,△BDC是等腰三角形,其中∠BDC=120°,过点D作∠EDF=60°,分别交AB于E,交AC于F,连接EF.(1)若BE=CF,求证:①△DEF是等边三角形;②BE+CF=EF.(2)若BE≠CF,即E、F分别是线段AB,AC上任意一点,BE+CF=EF还会成立吗?请说明理由. 展开
 我来答
手机用户12238
2015-01-08 · 超过66用户采纳过TA的回答
知道答主
回答量:121
采纳率:50%
帮助的人:126万
展开全部
解答:(1)证明:延长AB到N,使BN=CF,连接DN,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°,
在△EBD和△FCD中
BE=CF
∠EBD=∠FCD
BD=DC

∴△EBD≌△FCD(SAS),
∴ED=DF,
∵∠EDF=60°,
∴△EDF是等边三角形,
∵△EBD≌△FCD,
∴∠EDB=∠FDC,
∵在△NBD和△FCD中
BD=DC
∠NBD=∠FCD=90°
BN=CF

∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠EDB=∠FDC,
∴∠EDB=∠BDN=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中
DE=DE
∠EDF=∠EDN
DN=DF

∴△EDN≌△EDF(SAS),
∴EF=EN=BE+BN=BE+CF,
即△EDF是等边三角形,BE+CF=EF.

(2)解:BE+CF=EF还成立,理由是:
延长AB到N,使BN=CF,连接DN,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵△DBC是等腰三角形,∠BDC=120°,
∴∠DBC=∠DCB=30°,
∴∠ACD=∠ABD=30°+60°=90°=∠NBD,
∵在△NBD和△FCD中
BD=DC
∠NBD=∠FCD=90°
BN=CF

∴△NBD≌△FCD(SAS),
∴DN=DF,∠NDB=∠FDC,
∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠FDC=60°,
∴∠EDB+∠BDN=60°,
即∠EDF=∠EDN,
在△EDN和△EDF中
DE=DE
∠EDF=∠EDN
DN=DF

∴△EDN≌△EDF(SAS),
∴EF=EN=BE+BN=BE+CF,
即BE+CF=EF.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式