已知ab均为锐角,且cos(a+b)=sina/sinb,则tana的最大值

 我来答
99v
高粉答主

推荐于2016-05-24 · 关注我不会让你失望
知道顶级答主
回答量:3.5万
采纳率:97%
帮助的人:1.6亿
展开全部
cos(a+b)=sina/sinb
cos(A+B)sinB=sinA 得 -cosCsinB=sinA
利用正弦定理和余弦定理,-(a^2+b^2-c^2)/2a=a,得3a^2+b^2=c^2
由tan^2A=1/cos^2A-1,且A为锐角,得求tanA的最大值即求cosA的最小值
又cosA=(b^2+c^2-a^2)/2bc=(2b^2+c^2)/3bc≥2√(2b^2c^2)/3bc=2√2/3
即cosA的最小值为2√2/3
那么tanA的最大值为由cos(A+B)sinB=sinA得-cosCsinB=sinA
利用正弦定理和余弦定理,-(a^2+b^2-c^2)/2a=a,得3a^2+b^2=c^2
由tan^2A=1/cos^2A-1,且A为锐角,得求tanA的最大值即求cosA的最小值
又cosA=(b^2+c^2-a^2)/2bc=(2b^2+c^2)/3bc≥2√(2b^2c^2)/3bc=2√2/3
即cosA的最小值为2√2/3
那么tanA的最大值为√2/4
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式