已知幂函数f(x)=x^(-m^2-2m+3) (m属于Z)为偶函数,且在区间(0,+无穷大)上
已知幂函数f(x)=x^(-m^2-2m+3)(m属于Z)为偶函数,且在区间(0,+无穷大)上是单调增函数,则f(2)等于多少?...
已知幂函数f(x)=x^(-m^2-2m+3) (m属于Z)为偶函数,且在区间(0,+无穷大)上是单调增函数,则f(2)等于多少?
展开
5个回答
2015-05-21 · 知道合伙人教育行家
关注
展开全部
在(0,+无穷)上单调递增,则 -m^2-2m+3 > 0 ,
解得 -3 < m < 1 ,由于 m 为整数,因此 m = -2 或 -1 或 0 ,
又由于函数 f(x) 是偶函数,因此 -m^2-2m+3 为偶数,
检验知 m = -1 ,f(x) = x^4 ,
所以 f(2) = 2^4 = 16 。
解得 -3 < m < 1 ,由于 m 为整数,因此 m = -2 或 -1 或 0 ,
又由于函数 f(x) 是偶函数,因此 -m^2-2m+3 为偶数,
检验知 m = -1 ,f(x) = x^4 ,
所以 f(2) = 2^4 = 16 。
更多追问追答
追问
错了
追答
瞎个鼻炎,你采纳的那个连题都抄错了知道不???? MD
2015-05-21
展开全部
因为f(x)是偶函数,所以上面那个二次方程肯定是个偶数,又因为f(x)在区间(0,+无穷大)上是单调增函数,所以二次方程是个正偶数,然后解方程,m又是整数,只有m=-1,f(x)=x^4,f(2)=16
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询