(x+1)/x²-2x+5的不定积分是什么
(1/2)ln|x^2-2x+5| + arctan[(x-1)/2] + C
解题过程如下:
x+1= (1/2)(2x-2) +2
∫(x+1)/(x^2-2x+5) dx
=(1/2)∫(2x-1)/(x^2-2x+5) dx + 2∫dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| + 2∫dx/(x^2-2x+5)
consider
x^2-2x+5 = (x-1)^2 +4
let
x-1= 2tany
dx= 2(secy)^2 dy
∫dx/(x^2-2x+5)
=(1/2)∫ dy
=(1/2)y + C'
=(1/2)arctan[(x-1)/2] + C'
∫(x+1)/(x^2-2x+5) dx
=(1/2)ln|x^2-2x+5| + 2∫dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| + arctan[(x-1)/2] + C
记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。
扩展资料
定理
一般定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
牛顿-莱布尼茨公式
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。
2024-04-11 广告
∫(x+1)/(x^2-2x+5) dx
=(1/2)∫(2x-1)/(x^2-2x+5) dx + 2∫dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| + 2∫dx/(x^2-2x+5)
consider
x^2-2x+5 = (x-1)^2 +4
let
x-1= 2tany
dx= 2(secy)^2 dy
∫dx/(x^2-2x+5)
=(1/2)∫ dy
=(1/2)y + C'
=(1/2)arctan[(x-1)/2] + C'
∫(x+1)/(x^2-2x+5) dx
=(1/2)ln|x^2-2x+5| + 2∫dx/(x^2-2x+5)
=(1/2)ln|x^2-2x+5| + arctan[(x-1)/2] + C