已知cos(π/4+x)=3/5,17π/12<x<7π/4,求(sin2x+2sin²x)/1-
已知cos(π/4+x)=3/5,17π/12<x<7π/4,求(sin2x+2sin²x)/1-tanx....
已知cos(π/4+x)=3/5,17π/12<x<7π/4,求(sin2x+2sin²x)/1-tanx.
展开
2个回答
展开全部
解
∴[sin(2x)+2(sinx)^2]/(1-tanx)
=[2sinxcosx+2(sinx)^2]/(1-sinx/cosx)
=[2sinx(cosx)^2+2(sinx)^2(cosx)]/(cosx-sinx)
=2sinxcosx(sinx+cosx)/(cosx-sinx)
=sin2x(sin(x+π/4))/(cos(x+π/4)
=-cos(π/2+2x)(sin(x+π/4))/(cos(x+π/4)
=-(2cos^2(π/4+x)-1)×(-4/5)/(3/5)
=28/75
∴[sin(2x)+2(sinx)^2]/(1-tanx)
=[2sinxcosx+2(sinx)^2]/(1-sinx/cosx)
=[2sinx(cosx)^2+2(sinx)^2(cosx)]/(cosx-sinx)
=2sinxcosx(sinx+cosx)/(cosx-sinx)
=sin2x(sin(x+π/4))/(cos(x+π/4)
=-cos(π/2+2x)(sin(x+π/4))/(cos(x+π/4)
=-(2cos^2(π/4+x)-1)×(-4/5)/(3/5)
=28/75
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询