时间序列分析与SAS应用的目录

 我来答
柚子ˇ仆
2016-06-03
知道答主
回答量:72
采纳率:0%
帮助的人:10.4万
展开全部

1 时间序列的基本知识
1.1 时间序列概念
1.2 SAS介绍
1.2.1 SAS的显示管理系统
1.2.2 SAS的程式结构
1.2.3 SAS程式的输入及运行
1.2.4 DATA语句
1.2.5 CARDS语句
1.2.6 INPUT语句
1.2.7 PROC语句
1.2.8 PRINT过程
1.3 时间序列的平稳性
1.3.1 统计特征
1.3.2 时间序列的平稳性
1.3.3 严平稳与宽平稳的关系
1.3.4 样本均值、方差、自协方差与自相关函数
1.3.5 平稳时间序列的意义
1.4 异常点检验与缺省值的补足
1.4.1 时间序列数据的采集
1.4.2 异常点的检验与处理
1.4.3 缺省值的补足
1.5 平稳性检验
1.6 纯随机性检验
1.7 方差的同质性检验
1.7.1 方差的同质性检验
1.7.2 方差的稳定性转换
1.8 差分运算与后移算子
1.8.1 差分运算
1.8.2 后移算子
习题1
2 平稳时间序列
2.1 AR(p)模型
2.1.1 p阶自回归模型
2.1.2 P阶自回归模型的统计特性
2.2 MA模型
2.2.1 q阶移动平均模型
2.2.2 移动平均模型的统计特性
2.3 ARMA模型(Auto Regression Moving Average Model)
2.3.1 ARMA(p,q)模型
2.3.2 ARMA(p,q)模型的统计特性
2.4 ARMA模型的识别与参数估计
2.4.1 模型的初步识别
2.4.2 模型定阶
2.4.3 模型参数估计
2.4.4 模型的适应性检验和参数的显著性检验
2.5 平稳时间序列的预测
2.6 实例分析(I)
习题2
3 非平稳时间序列的确定性分析
3.1 时间序列的分解
3.1.1 Gramer分解定理
3.1.2 确定性因素分解
3.2 长期趋势分析及预报
3.2.1 平滑法
3.2.2 趋势拟合法
3.3 季节变动分析及预报
3.3.1 季节变动及其测定目的
3.3.2 季节变动分析及预测的原理与方法
3.4 X—11方法简介
3.4.1 X—11方法的基本思想
3.4.2 X—11方法
习题3
4 ARIMA模型
4.1 平稳化方法
4.1.1 差分运算的实质
4.1.2 平稳化方法
4.1.3 过差分
4.2 ARIMA(p,d,q)模型
4.2.1 ARIMA(p,d,q)模型
4.2.2 ARIMA(p,d,q)模型参数统计与预报
4.3 实例分析(Ⅱ)
习题4
5 传递函数模型
5.1 传递函数模型
5.2 传递函数模型的识别
5.3 干预模型
习题5
附表
参考文献
……

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
光点科技
2023-08-15 广告
通常情况下,我们会按照结构模型把系统产生的数据分为三种类型:结构化数据、半结构化数据和非结构化数据。结构化数据,即行数据,是存储在数据库里,可以用二维表结构来逻辑表达实现的数据。最常见的就是数字数据和文本数据,它们可以某种标准格式存在于文件... 点击进入详情页
本回答由光点科技提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式