
1个回答
展开全部
原题是: 求证:1/8+1/26+1/80……1/(3∧n-1)<1/4 , n≥2
n≥2时
1/8+1/26+1/80……1/(3∧n-1)
=1/(3^2-1)+1/(3^3-1)+1/(3^4-1)+…+1/(3∧n-1)
<1/(3^2-3)+1/(3^3-3^2)+1/(3^4-3^3)+…+1/(3∧n-3^(n-1))
=(1/6)[1+1/3+1/3^2+…+1/3^(n-2)]
=(1/6)(1-(1/3)^(n-1))/(1-(1/3))
=(1/4)-(1/4)(1/3)^(n-1))
<1/4
所以 1/8+1/26+1/80……1/(3∧n-1)<1/4 , n≥2
希望能帮到你!
n≥2时
1/8+1/26+1/80……1/(3∧n-1)
=1/(3^2-1)+1/(3^3-1)+1/(3^4-1)+…+1/(3∧n-1)
<1/(3^2-3)+1/(3^3-3^2)+1/(3^4-3^3)+…+1/(3∧n-3^(n-1))
=(1/6)[1+1/3+1/3^2+…+1/3^(n-2)]
=(1/6)(1-(1/3)^(n-1))/(1-(1/3))
=(1/4)-(1/4)(1/3)^(n-1))
<1/4
所以 1/8+1/26+1/80……1/(3∧n-1)<1/4 , n≥2
希望能帮到你!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询