lim[(2n+3)/(2n+2)]^(n), n趋向无穷大,求极限。
2个回答
展开全部
解:
lim [(2n+3)/(2n+2)]ⁿ
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1/(2n+2)]ⁿ
n→∞
=lim {[1+ 1/(2n+2)]²ⁿ⁺²}^(½) ·[1+ 1/(2n+2)]⁻¹
n→∞
=e^(½)· (1+0)⁻¹
=√e·1
=√e
lim [(2n+3)/(2n+2)]ⁿ
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1/(2n+2)]ⁿ
n→∞
=lim {[1+ 1/(2n+2)]²ⁿ⁺²}^(½) ·[1+ 1/(2n+2)]⁻¹
n→∞
=e^(½)· (1+0)⁻¹
=√e·1
=√e
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
引用xuzhouliuying的回答:
解:
lim [(2n+3)/(2n+2)]ⁿ
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1/(2n+2)]ⁿ
n→∞
=lim {[1+ 1/(2n+2)]²ⁿ⁺²}^(½) ·[1+ 1/(2n+2)]⁻¹
n→∞
=e^(½)· (1+0)⁻¹
=√e·1
=√e
解:
lim [(2n+3)/(2n+2)]ⁿ
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1/(2n+2)]ⁿ
n→∞
=lim {[1+ 1/(2n+2)]²ⁿ⁺²}^(½) ·[1+ 1/(2n+2)]⁻¹
n→∞
=e^(½)· (1+0)⁻¹
=√e·1
=√e
展开全部
lim [(2n+3)/(2n+2)]ⁿ
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1]ⁿ n→∞
=2
n→∞
=lim [(2n+2+1)/(2n+2)]ⁿ
n→∞
=lim [1+ 1]ⁿ n→∞
=2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询