1个回答
展开全部
(2n+3)/n(n+1)=a/n+b/(n+1)=(an+a+bn)/n(n+1)
a+b=2,a=3,b=-1
(2n+3)/n(n+1)=a/n+b/(n+1)=3/n-1/(n+1)
(1->N)∑ (2n+3)/n(n+1) *(1/3)^(n+1)=
(1->N)∑(1/3)^(n)/n-(1->N)∑1/(n+1)*(1/3)^(n+1)=
(1->N)∑(1/3)^(n)/n-(2->N+1)∑(1/3)^(n)/n=
=1/3-(1/3)^(N+1)
(1->∞)∑(2n+3)/n(n+1) *(1/3)^(n+1)=lim (N->∞) 1/3-(1/3)^(N+1)=1/3
a+b=2,a=3,b=-1
(2n+3)/n(n+1)=a/n+b/(n+1)=3/n-1/(n+1)
(1->N)∑ (2n+3)/n(n+1) *(1/3)^(n+1)=
(1->N)∑(1/3)^(n)/n-(1->N)∑1/(n+1)*(1/3)^(n+1)=
(1->N)∑(1/3)^(n)/n-(2->N+1)∑(1/3)^(n)/n=
=1/3-(1/3)^(N+1)
(1->∞)∑(2n+3)/n(n+1) *(1/3)^(n+1)=lim (N->∞) 1/3-(1/3)^(N+1)=1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询