证明f(x)=√x在[0,1]上一致连续
3个回答
展开全部
^|f(x1)-f(x2)|=|√x1-√x2|du≤√|x1-x2|<ε
则对任意ε>0 都存在δ=ε^2,使得对任意x1,x2满足|x1-x2|<δ
就有|f(x1)-f(x2)|<ε
因此f(x)=√x在[0,+∞]上一致连续
扩展资料:
当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。
某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x'和x",当满足|x'-x"|<δ时,|f(x')-f(x")|<ε恒成立,则该函数在区间I上一致连续。对于在闭区间上的连续函数,其在该区间上必一致连续。一致连续的函数必定是连续函数。
参考资料来源:百度百科-一致连续
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询