这方程怎么解
1个回答
展开全部
(I) 当a=0时,
f(x)=(x-1)/(x+1)
f'(x)=[(x+1)-(x-1)]/(x+1)^2=2/(x+1)^2
f(1)=0
f'(1)=1/2
设(1,f(1))处的切线为y=x/2+b
代入(0,1),可得b=1
所以,该切线为y=x/2+1
(II) f'(x)=a/x+2/(x+1)^2 (x>0)
所以f'(x)>0
所以f(x)在(0,正无穷)上单调递增。
∵y=x^3,∴y'=3x^2
设切线与曲线y=x^3的切点为(m,m^3)
那么切线的斜率k=3m^2
∵切线过点(1,0)和(m,m^3)
∴k=(m^3-0)/(m-1)=3m^2
2m^3-3m^2=0
∴m=3/2,k=27/4
设切线与曲线y=ax^2+(15/4)x-9的切点是(n,an^2+(15/4)n-9)
∵y=ax^2+(15/4)x-9,y'=2ax+15/4
∴k=2an+15/4=27/4,∴a=3/(2n)
又∵k=[an^2+(15/4)n-9-0]/(n-1)=27/4
∴n=-3/2,a=-1.
f(x)=(x-1)/(x+1)
f'(x)=[(x+1)-(x-1)]/(x+1)^2=2/(x+1)^2
f(1)=0
f'(1)=1/2
设(1,f(1))处的切线为y=x/2+b
代入(0,1),可得b=1
所以,该切线为y=x/2+1
(II) f'(x)=a/x+2/(x+1)^2 (x>0)
所以f'(x)>0
所以f(x)在(0,正无穷)上单调递增。
∵y=x^3,∴y'=3x^2
设切线与曲线y=x^3的切点为(m,m^3)
那么切线的斜率k=3m^2
∵切线过点(1,0)和(m,m^3)
∴k=(m^3-0)/(m-1)=3m^2
2m^3-3m^2=0
∴m=3/2,k=27/4
设切线与曲线y=ax^2+(15/4)x-9的切点是(n,an^2+(15/4)n-9)
∵y=ax^2+(15/4)x-9,y'=2ax+15/4
∴k=2an+15/4=27/4,∴a=3/(2n)
又∵k=[an^2+(15/4)n-9-0]/(n-1)=27/4
∴n=-3/2,a=-1.
东莞大凡
2024-11-19 广告
2024-11-19 广告
板格标定棋盘是我们东莞市大凡光学科技有限公司在精密光学测量领域的重要工具。它采用高精度设计,确保每一个格板都达到严格的校准标准。通过使用板格标定棋盘,我们能够有效地对光学测量系统进行校准,从而提升测量的准确性和可靠性。这一工具在光学仪器的研...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询