python sklearn 怎样实现多方法混合
1个回答
展开全部
最近在拿 sklearn 做中文文本分类器,
网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试,
然后分析测试结果看精确度。
现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了),
拿一段之前数据集里面没有的文本数据,使用训练好的文本分类器做类别预测,
问题是如何拿到预测的类别的名称呢。。。
代码如下:
# cls 是之前已经训练好的文本分类器对象
pred = clf.predict(X_new)
怎样从预测结果 pred ( ndarray )获取到分类的类别名称呢?
我有尝试过如下的方式去获取:
label_list = list()
网上找到的例子都是拿带标签的数据,二八划分后,八成用于训练模型,两成用于测试,
然后分析测试结果看精确度。
现在,我已经使用训练数据做好了模型训练(存在文本分类器的对象了),
拿一段之前数据集里面没有的文本数据,使用训练好的文本分类器做类别预测,
问题是如何拿到预测的类别的名称呢。。。
代码如下:
# cls 是之前已经训练好的文本分类器对象
pred = clf.predict(X_new)
怎样从预测结果 pred ( ndarray )获取到分类的类别名称呢?
我有尝试过如下的方式去获取:
label_list = list()
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询