北师大版初一(七年级)上册数学行程问题主要知识点

行程问题详解行程问题非常让我头疼,从小学开始到现在,所以看哪位朋友能将各种题型进行列举并说明原理,帮助我们打好这一块儿的基础,太谢谢大家了!这是关于数学方面的问题... 行程问题详解
行程问题非常让我头疼,从小学开始到现在,所以看哪位朋友能将各种题型进行列举并说明原理,帮助我们打好这一块儿的基础,太谢谢大家了!

这是关于数学方面的问题
展开
 我来答
嘭嘭锵
2011-02-19 · TA获得超过221个赞
知道答主
回答量:151
采纳率:0%
帮助的人:32万
展开全部
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等
第一章
1.1 正数与负数
在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

1.2 有理数
正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。
通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。
在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)
数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

1.3 有理数的加减法
有理数加法法则:
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì
求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

第二章 一元一次方程
2.1 从算式到方程
方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:
1.等式两边加(或减)同一个数(或式子),结果仍相等。
2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

2.2 从古老的代数书说起——一元一次方程的讨论(1)
把等式一边的某项变号后移到另一边,叫做移项。

第三章 图形认识初步
3.1 多姿多彩的图形
几何体也简称体(solid)。包围着体的是面(surface)。

3.2 直线、射线、线段
线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。

3.3 角的度量
1度=60分 1分=60秒 1周角=360度 1平角=180度

3.4 角的比较与运算
如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。
等角(同角)的余角相等。
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组
不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。求不等式组的解集的过程叫做解不等式组。
解不解不等式的诀窍
大于大于取大的(大大大);
例如:X>-1
X>2
不等式组的解集是X>2
小于小于取小的(小小小);
例如:X<-4
X<-6
不等式组的解集是X<-6
大于小于交叉取中间;
无公共部分分开无解了;
解方程型:
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?

解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克

①某球迷协会组织36名球拟租乘汽车赴比赛场地,为主队加油助威。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘4人,要求租用的车子不留空位,也不超载。若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。
问题补充:
甲步行,乙骑自行车,两人同时从相距45km的A、B两地出发相向而行,2.5h后两人相遇,已知乙骑自行车的速度是甲步行速度的2倍,求甲步行的速度。(列方程解)
1.某商店到苹果产地去收购苹果,收购价为每千克1.2元,从产地到商店的距离是400km,运费为每吨货物每运1km收1.5元,如果在运输及销售过程中的损耗为10%,商店要想获得其成本的25%的利润,零售价应是每千克多少元?

解:
运输成本:400*1。5=600元
收购成本:1。2*1000=1200元
设销价是X
1000*90%*X-[600+1200]=[600+1200]*25%
X=2.5
即销价是2.5元/千克

2.甲、乙两人各坐一游艇在湖中划行,甲每摇桨10次时,乙只能摇桨8次;而乙摇桨70次所走的路程等于甲摇桨90次所走的路程。开始时,甲先摇桨4次,乙接着摇桨。问乙摇几次桨才能追上甲?

解:
设甲每次前进的路程是1,乙要x次才能追上.乙x次的时候,甲划了(10/8)x=(5/4)x次,甲90次就是90,这需要乙70次,则乙每次前进90/70=9/7,甲先4次,就是4.
4+1*(5/4)x=(9/7)*x
[(9/7)-(5/4)]x=4
(1/28)x=4
x=112(次)
百度网友321e12bd3
2011-02-19 · TA获得超过154个赞
知道答主
回答量:12
采纳率:0%
帮助的人:0
展开全部
放手去做,一切皆有可能:乔吉拉德给我们的启示!

乔.吉拉德—世界吉斯尼汽车销售冠军,是世界上最伟大的销售员,他连续12年荣登世界吉斯尼记录大全世界销售第一的宝座,他所保持的世界汽车销售纪录:连续12年平均每天销售6辆车,至今无人能破。乔·吉拉德,因售出13000多辆汽车创造了商品销售最高纪录而被载入吉尼斯大全。他曾经连续15年成为世界上售出新汽车最多的人,其中6年平均每年售出汽车1300辆。

乔.吉拉德也是全球最受欢迎的演讲大师,曾为众多世界500强企业精英传授他的宝贵经验,来自世界各地数以百万的人们被他的演讲所感动,被他的事迹所激励。

三十五岁以前,乔.吉拉德是个全盘的失败者,他患有相当严重的口吃,换过四十个工作仍一事无成,甚至曾经当过小偷,开过赌场;然而,谁能想象得到,象这样一个谁都不看好,而且是背了一身债务几乎走投无路的人,竞然能够在短短三年内爬上世界第一,并被吉尼斯世界纪录称为“世界上最伟大的推销员"。

他是怎样做到的呢?虚心学习、努力执着、注重服务与真诚分享是乔.吉拉德四个最重要的成功关键。

销售是需要智慧和策略的事业。但在我们看来,信心和执著最重要,因为按照预测推断没人会想到乔吉拉德后来的辉煌!

由此可以推断,如果你的出身比乔吉拉德强,没有偷过东西,如果你不口吃,那你没有理由不成功,除非你对自己没有信心,除非你真的没有努力过,奋斗过!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
飞翔后的不恨鸟
2011-02-19
知道答主
回答量:36
采纳率:0%
帮助的人:16.6万
展开全部
基础知识不多,重在理解,好好推敲,因为这类题目不是很难,所以陷进百出,自己独立解决一些题后,掌握即运用就会很不错了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
CMY891
2011-02-19 · TA获得超过4.1万个赞
知道大有可为答主
回答量:6416
采纳率:0%
帮助的人:7945万
展开全部
行程问题主要知识点
1、时间、路程、速度存在着重要的等量关系:时间×路程=速度,这是行程问题中的基本关系式,由此变形还可得到:速度=路程÷时间,时间=路程÷速度,同时,路程一定时,时间与速度成反比,时间(或速度)一定时,路程与速度(或时间)成正比;
2、行程问题有三种常见的题型
相遇问题、追及问题、航行问题,三种类型都有一般公式,这些必须牢记!
(1)、相遇问题:相遇时间×速度和=路程和
(2)、追及问题:追及时间×速度差=被追及问题
(3)、航行问题:顺水速度=静水速度+水流速度
逆水速度=静水速度-水流速度
(4)、飞行问题:类比航行问题
(5)、环路问题:甲乙同时同地背向而行:甲路程—乙路程=环路一周的距离
甲乙同时同地同向而行:快者的路程—慢者的路程=环路一周的距离
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式