哪些图形是轴对称图形?
我们常见的轴对称图形有圆、长方形、正方形、等腰三角形、等边三角形、等腰梯形等。
1、在一个平面内,一动点以一定点为中心,以一定长度为距离旋转一周所形成的封闭曲线叫做圆。圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。
2、长方形的性质:两条对角线相等;两条对角线互相平分;两组对边分别平行;两组对边分别相等;四个角都是直角;有2条对称轴(正方形有4条);具有不稳定性(易变形);长方形对角线长的平方为两边长平方的和;顺次连接矩形各边中点得到的四边形是菱形。
3、正方形的两组对边分别平行,四条边都相等;四个角都是90°;对角线互相垂直、平分且相等,每条对角线都平分一组对角。既是中心对称图形,又是轴对称图形(有四条对称轴)。
4、等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。对称轴是底边上的高。
5、等边三角形(又称正三边形),为三边相等的三角形,其三个内角相等,均为60°,它是锐角三角形的一种。等边三角形也是最稳定的结构。等边三角形是特殊的等腰三角形,所以等边三角形拥有等腰三角形的一切性质。对称轴是底边上的高。
轴对称图形有圆、正方形、等腰三角形、椭圆等。
轴对称图形(axial symmetric figure),数学术语,定义为平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形。
直线叫做对称轴(axis of symmetric),并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
判定方法:
1、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
2、类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3、线段的垂直平分线上的点与这条线段的两个端点的距离相等。
4、对称轴是到线段两端距离相等的点的集合。
扩展资料:
一、相关性质
1、对称轴是一条直线。
2、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3、在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4、如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
5、图形对称。
二、轴对称图形和中心对称图形的区别
轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合。
中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合。
实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
1、既是轴对称图形又是中心对称图形的有:长方形,正方形,圆,菱形等。
2、只是轴对称图形的有:角,五角星,等腰三角形,等边三角形,等腰梯形等等。
3、只是中心对称图形的有:平行四边形。
4、既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
5、一个图形既轴对称又中心对称一定有两条或两条以上的对称轴。
参考资料:
例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形。
如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形(axial symmetric figure),图中MN这条直线叫做对称轴(axis of symetric);这时,我们也说这个图形关于这条直线对称。
扩展资料
性质
1.对称轴是一条直线。
2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。
3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
4.在轴对称图形中,对称轴把图形分成完全相等的两份或几份。
5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
6.图形对称。
定理及逆定理
定理1: 关于某条直线对称的两个图形是全等形。(全等形不一定关于某条直线对称)
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
轴对称,生活作用
1、为了美观,比如天安门,对称就显的美观漂亮;
2、保持平衡,比如飞机的两翼;
3、特殊工作的需要,比如五角星,剪纸。
参考资料:百度百科-什么是轴对称图形
2008-05-29
如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形(axially symmetric figure),这条直线叫做对称轴。
举例
例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴. 圆有无数条对称轴,每条圆的直径所在的直线都是圆的对称轴。
性质
对称轴是一条直线!
垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。
在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等。
轴对称的图形是全等的
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
旋转180度后与原图重合
图形对称
定理及其逆定理
定理1: 关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果他们的对称轴或延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
如果您认为本词条还有待完善,需要补充新内容或修改错误内容,请 编辑词条
我们常见的轴对称图形有圆、正方形、等腰三角形、等边三角形、等腰梯形等。
像窗花一样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称,这条直线叫做对称轴,两个图形中对应的点叫做对称点(symmetric points)。
把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴。
对称点到对称轴的距离相等。
轴对称图形的性质
1、对称轴是一条直线。
2、在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
3、在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
4、如果两个图形关于某条直线对称,那么这条直线就是对称轴且对称轴垂直平分对称点所连线段。
5、图形对称。