高中数学问题过程谢谢选择题
展开全部
设P(asecu,btanu),则圆F:(x-c)^2+y^2=1的切线
PA=PB=√[(asecu-c)^2+(btanu)^2-1],
FA⊥PA,FB⊥PB,FA=FB=1,
∴四边形FAPB的面积=PA,
∴√(4a^2-1)=√[(asecu-c)^2+(btanu)^2-1],
∴4a^2-1=(asecu-c)^2+(btanu)^2-1,
∴4a^2=a^2(secu)^2-2acsecu+c^2+(c^2-a^2)(tanu)^2,
∴3a^2+2acsecu-c^2(secu)^2=0,
解得a=csecu/3,
c/a=3cosu,c>a+1>2,|u|<π/2,
所求最大值是3.
PA=PB=√[(asecu-c)^2+(btanu)^2-1],
FA⊥PA,FB⊥PB,FA=FB=1,
∴四边形FAPB的面积=PA,
∴√(4a^2-1)=√[(asecu-c)^2+(btanu)^2-1],
∴4a^2-1=(asecu-c)^2+(btanu)^2-1,
∴4a^2=a^2(secu)^2-2acsecu+c^2+(c^2-a^2)(tanu)^2,
∴3a^2+2acsecu-c^2(secu)^2=0,
解得a=csecu/3,
c/a=3cosu,c>a+1>2,|u|<π/2,
所求最大值是3.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询