求22题解题步骤和答案,谢谢。
1个回答
展开全部
设:过这两点的一次函数为y=kx+b
∵过这两点
∴5=3k+b
3=2k+b(就是把这两点的坐标代进去,x换为横坐标的值,y同理)
解该二元一次方程组,得:
k=2
b=-1
∴y=2x-1
设二次函数为y=ax^2+bx+c
代入A(4,0)B(1,0)C(0,-2)
得a=-1/2,b=5/2
则y=(-1/2)x^2+(5/2)x-2
(2)
假设存在,设P(x,y)则:
当P在对称轴左侧时,即(1<x≤5/2)时,有:
OC:OA=PM:AM
即2:4=y:(4-x)
y=(-1/2)x^2+(5/2)x-2
则[(-1/2)x^2+(5/2)x-2]/(4-x)=1/2
得x=2或x=4(舍)
此时P点坐标为P(2,1)
当P在对称轴右侧时,即(5/2≤x<4)时,有:
OC:OA=(4-x):y
y=(-1/2)x^2+(5/2)x-2
则[(-1/2)x^2+(5/2)x-2]/(4-x)=2
得x=4(舍)或x=5(舍)
即只存在一点P(2,1)使△PMA与△OAC相似
∵过这两点
∴5=3k+b
3=2k+b(就是把这两点的坐标代进去,x换为横坐标的值,y同理)
解该二元一次方程组,得:
k=2
b=-1
∴y=2x-1
设二次函数为y=ax^2+bx+c
代入A(4,0)B(1,0)C(0,-2)
得a=-1/2,b=5/2
则y=(-1/2)x^2+(5/2)x-2
(2)
假设存在,设P(x,y)则:
当P在对称轴左侧时,即(1<x≤5/2)时,有:
OC:OA=PM:AM
即2:4=y:(4-x)
y=(-1/2)x^2+(5/2)x-2
则[(-1/2)x^2+(5/2)x-2]/(4-x)=1/2
得x=2或x=4(舍)
此时P点坐标为P(2,1)
当P在对称轴右侧时,即(5/2≤x<4)时,有:
OC:OA=(4-x):y
y=(-1/2)x^2+(5/2)x-2
则[(-1/2)x^2+(5/2)x-2]/(4-x)=2
得x=4(舍)或x=5(舍)
即只存在一点P(2,1)使△PMA与△OAC相似
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询