设A是m乘n矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是什么?

 我来答
火虎生活小达人
高能答主

2020-12-24 · 致力于成为全知道最会答题的人
知道大有可为答主
回答量:5246
采纳率:100%
帮助的人:172万
展开全部

齐次线性方程组AX=0仅有零解的充分必要条件是:A的列向量组线性无关。

因为根据矩阵相乘的原则,AX的结果,就是A每一行的各个元素分别和X对应的每个元素相乘,然后相加。成为结果向量的对应元素。所以A矩阵的列向量的每个元素都乘相同的x值。

扩展资料:

有命题p、q,如果p推出q且q推出p,则p是q的充分必要条件,简称充要条件

p推出q,p是q的充分条件,同时q是p的必要条件,此时p是q的子集。

例如:a、b一正一负推出ab<0,ab<0推出a、b一正一负,则a、b一正一负和ab<0互为充要条件。

简单的说就是在证p与q时,前面那个推出后面那个就是充分条件;后面那个推出前面那个就是必要条件;前面能推出后面、后面也能推出前面就是充要条件。

阿肆说教育
2020-12-24 · 我是阿肆,专注于分享教育知识。
阿肆说教育
采纳数:1988 获赞数:289670

向TA提问 私信TA
展开全部

设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是A的列向量组线性无关。

由线性关系的定义求解。

解:A为m×n矩阵,∴A有m行n列,且方程组有n个未知数

Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n

∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.

矩阵A有n列,∴A的列向量组线性无关

而A有m行,m可能小于n,此时行向量组线性无关,只能说R(A)=m,不能证明r(A)≥n。

因此,充分必要条件是A的列向量组线性无关。

扩展资料

线性关系的显著特征是图像为过原点的直线(没有常数项的情况下,如:y=kx+jz,(k,j为常数,x,z为变量);而当图像为不过原点的直线时,函数称为直线关系。

线性关系与直线关系是两不同的,经常被大家搞混淆。

首先每一项(常数项除外)的次数必须是一次的(这是最重要的)。

如:x=y+z+c+v+b

那么就说他们(x与y,z,c,v,b都是变量)是线性关系,可以说成:x与y是线性关系,或y与z是线性关系等等,

如果出现平方,开方这些就肯定不是线性关系。

如果每项的次数不是一次就不是线性关系:x=y*z(这里假定y,z是变量而不是常数),那么x与y,或x与z就不是线性关系。

常数对是否构成直线关系没影响(假定常数不为0)如:x=k*y+l*z+a(k,l是常数,y,z是变量,a是常数)那么x与y,z还是线性的,因为项:k*y是一次的,l*z这项也是一次的,常数项a没影响。

如:x=7*y+8*z是线性的,x=-y-2*z是线性的。x=2*y*z是非线性的(因为2yz这一项不是一次的)。

从二维图像来讲(假定只有y跟x这两个变量),线性的方程一定是直线的,曲的不行,有转折的也不行。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-03-31 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1682万
展开全部

A的列向量组线性无关。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
xindongreneu
推荐于2019-08-04 · TA获得超过9.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:86%
帮助的人:5225万
展开全部
当然是A的列向量线性无关这个选项,也就是A选项啦。
因为根据矩阵相乘的原则,AX的结果,就是A每一行的各个元素分别和X对应的每个元素相乘,然后相加。成为结果向量的对应元素。
所以A矩阵的列向量的每个元素都乘相同的x值(即A矩阵的每一列都是相同的未知数)
所以AX其实就是A的每个列向量分别乘以一个系数后,在相加。
现在AX=0只有0解,说明A的各个列向量各乘一个系数相加等于0向量,系数必须都是0,不存在系数不全为0的情况下,相加为0向量的情况。
这本身就是列向量线性无关的定义啊。
所以选A
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2020-12-24 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:769万
展开全部

设A为m×n矩阵,齐次线性方程组AX=0仅有零解的充分必要条件是A的列向量组线性无关。


由线性关系的定义求解。


解:A为m×n矩阵,∴A有m行n列,且方程组有n个未知数


Ax=0仅有零解⇔A的秩不小于方程组的未知数个数n


∵R(A)=n⇔A的列秩=n⇔A的列向量线性无关.


矩阵A有n列,∴A的列向量组线性无关


而A有m行,m可能小于n,此时行向量组线性无关,只能说R(A)=m,不能证明r(A)≥n。


因此,充分必要条件是A的列向量组线性无关。


扩展资料


函数线性相关的定理


1、向量a1,a2, ···,an(n≧2)线性相关的充要条件是这n个向量中的一个为其余(n-1)个向量的线性组合。


2、一个向量线性相关的充分条件是它是一个零向量。


3、两个向量a、b共线的充要条件是a、b线性相关。


4、三个向量a、b、c共面的充要条件是a、b、c线性相关。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式