高等数学 定积分的等式证明?
2个回答
展开全部
题目错误。应为 :I = ∫<0, π>xf(sinx)dx = (π/2)∫<0, π>f(sinx)dx
证:令 x = π-u, 则 dx = -du,x = 0 时,u = π; x = π 时,u = 0.
代入左边,得
I = ∫<0, π>xf(sinx)dx = ∫<π, 0>(π-u)f[sin(π-u)](-du)
= ∫<0, π>(π-u)f(sinu)du
= π∫<0, π>f(sinu)du - ∫<0, π>uf(sinu)du
2I = π∫<0, π>f(sinu)du, I = (π/2)∫<0, π>f(sinx)dx.
证:令 x = π-u, 则 dx = -du,x = 0 时,u = π; x = π 时,u = 0.
代入左边,得
I = ∫<0, π>xf(sinx)dx = ∫<π, 0>(π-u)f[sin(π-u)](-du)
= ∫<0, π>(π-u)f(sinu)du
= π∫<0, π>f(sinu)du - ∫<0, π>uf(sinu)du
2I = π∫<0, π>f(sinu)du, I = (π/2)∫<0, π>f(sinx)dx.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询