4个回答
展开全部
把x=2带入x-2中得分母为零,若分子不为零,则极限无穷大,所以若想极限不是无穷大,只有分子同时为0,由罗比达法则得到极限等于3,所以把x=2带入分子得a+2=0,解得a=-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)
=sinkx/√(1-cosx) ; x<0
=(1/x)[lnx-ln(x+x^2)] ; x>0
x->0-
sinkx ~ kx
√(1-cosx) ~ -(√2/2)x
f(0-)
=lim(x->0-) sinkx/√(1-cosx)
=lim(x->0-) kx/√[-(√2/2)x]
=-√2k
f(0+)
=lim(x->0+) (1/x)[lnx-ln(x+x^2)]
=lim(x->0+) (1/x)ln[x/(x+x^2)]
=lim(x->0+) (1/x)ln[1/(1+x)]
=lim(x->0+) (1/x)[-ln(1+x)]
=lim(x->0+) (1/x)(-x)
=-1
f(0+) =f(0-)
-√2k=-1
k =√2/2
=sinkx/√(1-cosx) ; x<0
=(1/x)[lnx-ln(x+x^2)] ; x>0
x->0-
sinkx ~ kx
√(1-cosx) ~ -(√2/2)x
f(0-)
=lim(x->0-) sinkx/√(1-cosx)
=lim(x->0-) kx/√[-(√2/2)x]
=-√2k
f(0+)
=lim(x->0+) (1/x)[lnx-ln(x+x^2)]
=lim(x->0+) (1/x)ln[x/(x+x^2)]
=lim(x->0+) (1/x)ln[1/(1+x)]
=lim(x->0+) (1/x)[-ln(1+x)]
=lim(x->0+) (1/x)(-x)
=-1
f(0+) =f(0-)
-√2k=-1
k =√2/2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询