高数,利用单调性证明下列不等式?

求各位帮帮忙... 求各位帮帮忙 展开
 我来答
婉顺还轻盈灬宝贝457
2019-12-30 · TA获得超过6234个赞
知道大有可为答主
回答量:1.3万
采纳率:49%
帮助的人:583万
展开全部
设f(x)=[e^x+e^(-x)]/2-1-(x^2)/2
则f'(x)=[e^x-e^(-x)]/2-x
f''(x)=[e^x+e^(-x)]/2-1>=0,f''(x)>=f''(0)=0
所以f'(x)为单调递增函数
f'(0)=0,x<=0时,f'(x)<0;x>=0时,f'(x)>0
即x<=0时,f(x)单调递减,x>=0时,f(x)单调递增
f(0)=0,即有,x<=0时,f(x)>=0,x>=0时,f(x)>=0
[e^x+e^(-x)]/2-1-(x^2)/2>=0 =>[e^x+e^(-x)]/2>=1+(x^2)/2
注,原题应该少写了等号
追问
你写的不是我这个题啊
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式