∫(-2,2)(x-2)√(4-x∧2)∧3dx
2个回答
展开全部
4-x²=2²-x²,令x=2sinu则dx=2cosudu,sinu=x/2
√(4-x²)=√(4-4sin²u)=2cosu,cosu=(1/2)√(4-x²)
∴∫(x-2)√(4-x²) dx
=∫(2sinu-2)2cosu*2cosu du
=8∫(sinu-1)cos²u du
=8∫sinucos²u du-8∫cos²u du
=-8∫cos²u d(cosu)-4∫(1+cos2u) du
=(-8/3)cos³u-4(u+1/2*sin2u)+C
=(-8/3)[1/2*√(4-x²)]³-4arcsin(x/2)-4*x/2*(1/2)√(4-x²)+C
=(-1/3)(4-x²)^(3/2)-4arcsin(x/2)-x√(4-x²)+C
√(4-x²)=√(4-4sin²u)=2cosu,cosu=(1/2)√(4-x²)
∴∫(x-2)√(4-x²) dx
=∫(2sinu-2)2cosu*2cosu du
=8∫(sinu-1)cos²u du
=8∫sinucos²u du-8∫cos²u du
=-8∫cos²u d(cosu)-4∫(1+cos2u) du
=(-8/3)cos³u-4(u+1/2*sin2u)+C
=(-8/3)[1/2*√(4-x²)]³-4arcsin(x/2)-4*x/2*(1/2)√(4-x²)+C
=(-1/3)(4-x²)^(3/2)-4arcsin(x/2)-x√(4-x²)+C
展开全部
∫x^2√(4-x^2)dx
=∫(x^2-4)√(4-x^2)dx+4∫√(4-x^2)dx
=∫-√(4-x^2)^3dx+4∫√(4-x^2)dx
= -x√(4-x^2)^3-∫3x^2√(4-x^2)dx+4∫√(4-x^2)dx
4∫x^2√(4-x^2)dx=-x√(4-x^2)^3+4∫√(4-x^2)dx
∫x^2√(4-x^2)dx=(-1/4)x√(4-x^2)^3+∫√(4-x^2)dx
=(-1/4)x√(4-x^2)^3+(1/2)x√(4-x^2)+2arcsin(x/2)+C
∫√(4-x^2)dx=x√(4-x^2)+∫x^2dx/√(4-x^2)=x√(4-x^2)-∫√(4-x^2)dx+4∫dx/√(4-x^2)
2∫√(4-x^2)dx=x√(4-x^2)+4∫d(x/2)/√(1-x^2/4)
∫√(4-x^2)=(1/2)x√(4-x^2)+2arcsin(x/2)
=∫(x^2-4)√(4-x^2)dx+4∫√(4-x^2)dx
=∫-√(4-x^2)^3dx+4∫√(4-x^2)dx
= -x√(4-x^2)^3-∫3x^2√(4-x^2)dx+4∫√(4-x^2)dx
4∫x^2√(4-x^2)dx=-x√(4-x^2)^3+4∫√(4-x^2)dx
∫x^2√(4-x^2)dx=(-1/4)x√(4-x^2)^3+∫√(4-x^2)dx
=(-1/4)x√(4-x^2)^3+(1/2)x√(4-x^2)+2arcsin(x/2)+C
∫√(4-x^2)dx=x√(4-x^2)+∫x^2dx/√(4-x^2)=x√(4-x^2)-∫√(4-x^2)dx+4∫dx/√(4-x^2)
2∫√(4-x^2)dx=x√(4-x^2)+4∫d(x/2)/√(1-x^2/4)
∫√(4-x^2)=(1/2)x√(4-x^2)+2arcsin(x/2)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询