平行四边形的性质和定理包括判定都分别有什么意义与不同?有好评!
2个回答
展开全部
线线平行
判定方法
①【定义】同一平面内,两直线无公共点,称两直线平行.
②【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性)
③【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行.
④【性质】x2逆定理、x4、x6及垂直关系性质
主要性质
x1【定理】空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(等角定理)
x2【定理】三条平行线截两条直线,所得对应线段成比例.(平行线分线段成比例定理)
线面平行
(1)直线在平面内
判定方法
①【定义】直线与平面有无数个公共点,称直线在平面内.
②【公理】如果一条直线上两点在一平面内,那么这条直线在此平面内.
③【公理】任意两点确定一条直线,不共线的三点确定一个平面;两相交直线、两平行直线确定一平面.
④【性质】x3及垂直关系性质
主要性质
x3【定理】过平面内一点的直线平行于此平面的一条平行线,则此直线在这个平面内.
(2)直线在平面外
判定方法
①【定义】直线与平面无公共点,称直线与平面平行.
②【定理】平面外一直线与平面内一直线平行,则该直线与此平面平行.
③【性质】x5、x7及垂直关系性质
主要性质
x4【定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
x5【定理】平面外的两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面.
面面平行
判定方法
①【定义】两平面无公共点,称两平面平行.
②【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性)
③【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
④【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.
⑤【性质】x8逆定理、x9及垂直关系性质
主要性质
x6【定理】如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
x7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面.
x8【定理】夹在两个平行平面间的平行线段相等.【逆定理】若两个平面所夹的平行线段相等,则这两个平面平行.
x9【结论】经过平面外一点有且只有一个平面与已知平面平行.(存在性与唯一性)
说明:请自行用图形与符号描述上述几何原理。
判定方法
①【定义】同一平面内,两直线无公共点,称两直线平行.
②【公理】平行于同一直线的两条直线互相平行.(空间平行线传递性)
③【定理】同位角相等,或内错角相等,或同旁内角互补,两直线平行.
④【性质】x2逆定理、x4、x6及垂直关系性质
主要性质
x1【定理】空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.(等角定理)
x2【定理】三条平行线截两条直线,所得对应线段成比例.(平行线分线段成比例定理)
线面平行
(1)直线在平面内
判定方法
①【定义】直线与平面有无数个公共点,称直线在平面内.
②【公理】如果一条直线上两点在一平面内,那么这条直线在此平面内.
③【公理】任意两点确定一条直线,不共线的三点确定一个平面;两相交直线、两平行直线确定一平面.
④【性质】x3及垂直关系性质
主要性质
x3【定理】过平面内一点的直线平行于此平面的一条平行线,则此直线在这个平面内.
(2)直线在平面外
判定方法
①【定义】直线与平面无公共点,称直线与平面平行.
②【定理】平面外一直线与平面内一直线平行,则该直线与此平面平行.
③【性质】x5、x7及垂直关系性质
主要性质
x4【定理】一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.
x5【定理】平面外的两条平行直线中的一条平行于这个平面,则另一条也平行于这个平面.
面面平行
判定方法
①【定义】两平面无公共点,称两平面平行.
②【公理】平行于同一平面的两个平面互相平行.(空间平行面传递性)
③【定理】一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.
④【定理】一个平面内的两条相交直线分别平行于另一个平面内的两条相交直线,则这两个平面平行.
⑤【性质】x8逆定理、x9及垂直关系性质
主要性质
x6【定理】如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
x7【定理】如果两个平面平行,那么其中一平面内的任一直线平行于另一平面.
x8【定理】夹在两个平行平面间的平行线段相等.【逆定理】若两个平面所夹的平行线段相等,则这两个平面平行.
x9【结论】经过平面外一点有且只有一个平面与已知平面平行.(存在性与唯一性)
说明:请自行用图形与符号描述上述几何原理。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[编辑本段]平行四边形的性质和判定
1.
定义:
两组对边分别平行的四边形叫做平行四边形。
2.性质:
⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)
⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)
⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)
⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:
(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)
(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)
(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”
(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)
[编辑本段]矩形的性质和判定
定义:有一个角是直角的平行四边形叫做矩形.
性质:①矩形的四个角都是直角;
②矩形的对角线相等
.
注意:矩形具有平行四边形的一切性质
.
判定:①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
.
[编辑本段]菱形的性质和判定
定义:有一组邻边相等的平行四边形叫做菱形.
性质:①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角
.
注意:菱形也具有平行四边形的一切性质
.
判定:①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
(4).有一条对角线平分一组对角的平行四边形是菱形
[编辑本段]正方形的性质和判定
定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.
性质:①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
.
判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径
①四条边都相等的平行四边形是正方形
②有一组临边相等的矩形是正方形
③有一个角是直角的菱形是正方形
够全了吧?楼主还要其它四边形的吗?呵呵。。我给你弄个梯形的来吧
梯形及特殊梯形的定义
梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)
等腰梯形:两腰相等的梯形叫做等腰梯形.
直角梯形:一腰垂直于底的梯形叫做直角梯形.
[编辑本段]等腰梯形的性质
1、等腰梯形两腰相等、两底平行;
2、等腰梯形在同一底上的两个角相等;
3、等腰梯形的对角线相等;
4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴.
[编辑本段]等腰梯形的判定
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形.
呵呵。。现在足够了吧?
1.
定义:
两组对边分别平行的四边形叫做平行四边形。
2.性质:
⑴如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的对边相等”)
⑵如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的对角相等”)
⑶夹在两条平行线间的平行线段相等。
⑷如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的两条对角线互相平分”)
⑸平行四边形是中心对称图形,对称中心是两条对角线的交点。
3.判定:
(1)如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形。
(简述为“两组对边分别相等的四边形是平行四边形”)
(2)如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。
(简述为“一组对边平行且相等的四边形是平行四边形”)
(3)如果一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。
(简述为“对角线互相平分的四边形是平行四边形”)
(4)如果一个四边形的两组对角分别相等,那么这个四边形是平行四边形。
(简述为“两组对角分别相等的四边形是平行四边形”
(5)如果一个四边形的两组对边分别平行,那么这个四边形是平行四边形。
(简述为“两组对边分别平行的四边形是平行四边形”)
[编辑本段]矩形的性质和判定
定义:有一个角是直角的平行四边形叫做矩形.
性质:①矩形的四个角都是直角;
②矩形的对角线相等
.
注意:矩形具有平行四边形的一切性质
.
判定:①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
.
[编辑本段]菱形的性质和判定
定义:有一组邻边相等的平行四边形叫做菱形.
性质:①菱形的四条边都相等;
②菱形的对角线互相垂直,并且每一条对角线平分一组对角
.
注意:菱形也具有平行四边形的一切性质
.
判定:①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形
(4).有一条对角线平分一组对角的平行四边形是菱形
[编辑本段]正方形的性质和判定
定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形.
性质:①正方形的四个角都是直角,四条边都相等;
②正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
.
判定:因为正方形具有平行四边形、矩形、菱形的一切性质,所以我们判定正方形有三个途径
①四条边都相等的平行四边形是正方形
②有一组临边相等的矩形是正方形
③有一个角是直角的菱形是正方形
够全了吧?楼主还要其它四边形的吗?呵呵。。我给你弄个梯形的来吧
梯形及特殊梯形的定义
梯形:一组对边平行而另一组对边不平行的四边形叫做梯形.(一组对边平行且不相等的四边形叫做梯形.)
等腰梯形:两腰相等的梯形叫做等腰梯形.
直角梯形:一腰垂直于底的梯形叫做直角梯形.
[编辑本段]等腰梯形的性质
1、等腰梯形两腰相等、两底平行;
2、等腰梯形在同一底上的两个角相等;
3、等腰梯形的对角线相等;
4、等腰梯形是轴对称图形,它只有一条对称轴,一底的垂直平分线是它的对称轴.
[编辑本段]等腰梯形的判定
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形.
呵呵。。现在足够了吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询