dx/x平方根号(1+x平方) 求不定积分
展开全部
∫
dx/[x^2√(1+x^2)]
换元,x=tant
=∫
d(tant)/[tan^2t√(1+tan^2)]
=∫
(dt/cos^2t)
/
[tan^2t/cost]
=∫
dt
/
cost*tan^2t
=∫
cost/sin^2t
dt
=∫
1/sin^2t
d(sint)
=-1/sint
+
C
因为
x=tant
即:1/x^2=cot^2t
再即:1+1/x^2=1+cot^2t=1
+
cos^2t/sin^2t=1/sin^2t
那么,1/sint=√(1+1/x^2)=√(x^2+1)
/
x
因此,
∫
dx/[x^2√(1+x^2)]=√(x^2+1)
/
(-x)
+
C
有不懂欢迎追问
dx/[x^2√(1+x^2)]
换元,x=tant
=∫
d(tant)/[tan^2t√(1+tan^2)]
=∫
(dt/cos^2t)
/
[tan^2t/cost]
=∫
dt
/
cost*tan^2t
=∫
cost/sin^2t
dt
=∫
1/sin^2t
d(sint)
=-1/sint
+
C
因为
x=tant
即:1/x^2=cot^2t
再即:1+1/x^2=1+cot^2t=1
+
cos^2t/sin^2t=1/sin^2t
那么,1/sint=√(1+1/x^2)=√(x^2+1)
/
x
因此,
∫
dx/[x^2√(1+x^2)]=√(x^2+1)
/
(-x)
+
C
有不懂欢迎追问
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询